dapnia

Modelisation of the ILC Interaction saclay **Region, and Magnets studies** I: ILC IR **O. Napoly, J. Payet, R. Versteegen** II: ILD Solenoid **O. Delferrière, F. Kircher** III: Nb3Sn Quadrupole M. Durante, M. Segreti CEA, IRFU

EUROTeV Meeting Uppsala, 27 August 2008

ILC IR: 0 and 14 mrad crossing angle

saclay

dapnia

The long term goal is to compare the operability and tunability of the 0 mrad and 14 mrad ILC Interaction Region
The short term goal is to provide an 'effective' modelisation of the beam transport through the IR which includes many magnets (solenoid, final doublet, antisolenoid, antiDID,

	Solenoid 14 mrad	Solenoid+QD0 0 mrad	Solenoid + QD0 14 mrad
Matrix model with thick S+Q elements	x	x	
Matrix model with Q- Slices	X	X	X
Analytic model	X		
Field map integration	X	X	?

correctors, etc...)

27/08/2008

• Field map integrations and the analytic model with linearly decreasing fringe field, in agreement and predict $\delta y^* \sim 6$ nm. This is due to the non-zero δx on the way to the IP.

- Matrix transport models do not see this effect.
- \bullet BETA predicts 130 nm / 30 μm maximum orbit deviation.

ILC IR: 0 and 14 mrad crossing angle

œ

saclay

dapnia

• Solenoid + QD0 with 0 mrad angle : the coupling effect

EUROTeV Annual Meeting, Uppsala

dapnia ILC IR: 0 and 14 mrad crossing angle

• Solenoid + QD0 with 0 mrad angle : the coupling effect

saclay

Correction of the coupling effect with 3 skew quads.

The predicted single bunch offset is $\delta y^* = 3 \mu m$. The field map integration code are not yet ready to include the crossing angle.

dapnia ILC IR: 0 and 14 mrad crossing angle

Next steps:

saclay

- 1. Establish a reference model for the beam transport.
 - 2. Extend field map integration method to the 14 mrad case.
 - 3. Check the beam size coupling effect at 14 mrad.
 - 4. Include anti-solenoid fields for local coupling correction.
 - 5. Include anti-DID.

EUROTeV Annual Meeting, Uppsala

Nb3Sn Quadrupole Prototype

dapnia

\mathfrak{E}

Main goals :

- Get an experience in the Nb_3Sn technology keeping in mind the industrialization process.
 - Build a 1-m-long model, 56-mm single aperture with no magnetic yoke based on the design of LHC arc quadrupole magnets

Gradient	211 T/m	
Current	11870 A	
B _{peak}	8.3 T	

- 8 pole pieces have been manufactured, 5 met specs.
- The best 4 poles have been assembled and collared late 2007 with ACCEL tooling

Nb3Sn Quadrupole Prototype

→ The cold test with high gradient will take place in the fall of 2008.

saclay

dapnia

Gradient211 T/mCurrent11870 AB peak8.3 T

 The foreseen test of quadrupole embedded in a 4 T solenoid will not take place.

dapnia

saclay I: ILC IR Modelisation

New PhD student (R. Versteegen) will continue the work for the next 3 years

II: ILD Solenoid

Coil optimisation and 3D magnet studies are well supported

III: Nb3Sn Quadrupole

Magnet prototyping will continue, supported by SLHC (NbTi Quad, D = 130 mm and Bpeak = 10 T) and by EuCard (Nb3Sn Dipole, D = 100 mm and B = 13 T)