

More results SiD PFA Meeting 04.06.2008 M. Stanitzki

Segmentation studies

- First approach
 - keep the total HCAL thickness constant
 - vary steel thickness and number of scintillator layers
 - Detector tags SIDish_v2_hcalXX (XX= number of layers)
- Second approach
 - keep λ_{Ironl} constant at n λ
 - vary steel thickness and number of scintillator layers
 - Detector tags SIDish_v2_hcalXX_IYY
 - XX= number of layers)
 - YY= number of lambda

The variants

TAG	Layers	total thickness	Iron thickness	Scintillator thickness	HCAL thickness	λ
SIDish_v2_hcal30	30	32.7	26.2	6.5	980	4.92
SIDish_v2_hcal40	40	24.5	18.0	6.5	980	4.61
SIDish_v2_hcal50	50	19.6	13.1	6.5	980	4.45
SIDish_v2_hcal30_l45	30	31.7	25.2	6.5	951	4.75
SIDish_v2_hcal40_l45	40	25.4	18.9	6.5	1016	4.83
SIDish_v2_hcal50_l45	50	21.6	15.1	6.5	1081	4.91
SIDish_v2_hcal30_l50	30	34.5	28.0	6.5	1035	5.25
SIDish_v2_hcal40_l50	40	27.5	21.0	6.5	1100	5.33
SIDish_v2_hcal50_l50	50	23.3	16.8	6.5	1165	5.41

• Some Comments

- different Mokka compared to all other studies
- SIDish_v2_hcal40 is the "standard" SiDish !
- λ done with λ_{Iron} =168 mm and λ_{Scint} =795 mm
- note: there is some more material between HCAL and ECAL

The results

Detector Tea	Layers	uds (9	1 Gev)	uds (200 GeV)	
Delector rag		α%	Error	α%	Error
SIDish_v2_hcal30	30	30.5	0.4	40.5	0.7
SIDish_v2_hcal40	40	28.5	0.5	38.2	0.7
SIDish_v2_hcal50	50	28.6	0.4	38.8	0.8
SIDish_v2_hcal30_l45	30	29.6	0.4	39.9	0.7
SIDish_v2_hcal40_l45	40	29.3	0.4	38.7	0.7
SIDish_v2_hcal50_l45	50	28.2	0.7	36.7	0.7
SIDish_v2_hcal30_l50	30			40.6	0.8
SIDish_v2_hcal40_l50	40			38.1	0.7
SIDish_v2_hcal50_l50	50				

Fixed 4.5 λ_{Iron} SIDish_v2_hcalXX_I45

Number of layers

n_{Layers}/ [^]Iron

Fixed total thickness

SIDish_v2_hcalXX

Number of layers

n_{Layers}/ [^]Iron

Fixed 5.0 λ_{Iron} SIDish_v2_hcalXX_I45

Playing with the ECAL

- Point raised by Harry, is the ECAL optimal ?
 - we see a benefit going from 20+10 to 30+10 layers
 - better segmentation helps ?
 - or just pure thickness ?
 - Effect is ~ 2 %
- Made a SiDish_ecal_q37
 - SiDish with 37 layers but same overall thickness
- Make a SIDish_ecal25_50
 - 20+10 layers
 - 2.5 mm /5.0 mm tungsten thickness and smaller gaps (1 mm)
 - will change global radius (very small effect)

Some results

Detector Tea	Radiator	Layers	X ₀	uds (9	1 Gev)	uds (200 GeV)	
Delector rag	Thickness			α%	Error	α%	Error
SIDish	1.4/4.2 mm	20+10	20	27.9	0.4	35.4	0.7
SIDish_ecal40	1.4/4.2mm	30+10	24	27.1	0.5	33.9	0.6
SIDish_ecal_eq37	1.41 mm	37	15	28.1	0.4	37.6	0.6
SIDish_ecal25_50	2.5/5.0 mm	20+10	29	27.3	0.4	35.1	0.6

some plots

Z dependence

Taking the standard samples and looking in the forward ... $0.9 < \cos\theta_{\text{Thrust}} < 1.0$, so integrating everything in that region

Detector Tea	В	Z	R/Z	uds (91 GeV)		uds (200 GeV)	
Delector rag				α%	Error	α%	Error
SIDish	5	1.7	0.74	70.4	1.8	105.0	4.0
SIDish_r125_z15	5	1.5	0.83	76.1	2.1	110.5	4.2
SIDish_r125_z19	5	1.9	0.66	67.8	1.7	92.4	3.5
SIDish_4T	4	1.7	0.74	71.8	1.8	106.2	4.0
SIDish_6T	6	1.7	0.74	69.5	1.7	99.9	3.8
LDC00Sc	4	2.7	0.63	49.5	1.3	66.6	2.5

This is way less statistics plus there are two jets and not one well defined u-quark !

Some help ...

at 91 GeV

at 200 GeV

Energy Dependence

Let's Play

• Fit the z and B dependence for the forward region

- Proposed function : $\alpha = n_1 Z + n_2 B^{n_3} + n_4$

• For 91 GeV Fit wants no B-Field Dependence:

 $\alpha = -0.021 \ Z + 106.533$

- For 200 GeV there is very weak B-Field Dependence (ignored)
 α=-0.035 Z+162.935
- suggests increase with *E*
- May require a few more points

First result

Fitting z and Energy

- Ignoring B ...
 - $\alpha = \frac{1}{E^{n_1}} n_2 Z + n_3$
- Fitting again $\alpha = \frac{1}{E^{0.451}} - 0.003 \ Z + 14.243$
- need more points and statistics for
 - B field
 - Calorimeter impact
 - These Effects are in the noise so far

Z dependence (II)

- Due to popular request by a single gentleman
- Norman kindly generated u jets going at $cos(\theta)=0.92$ for three energies: 50, 100, 250
- 250 GeV done for LDC00Sc and SIDish
 - something funny, which needs cross-checking
 - it looks like they are all over the place not only at $cos(\theta)=0.92$

Some Plots

250 GeV

Results

Detector Tea	u (50	GeV)	u (100	GeV)	u (250 GeV)	
Delector rag	α%	Error	α%	Error	α%	Error
SIDish	39.9	0.4	40.2	0.4	69.1	0.2
LDC00Sc	32.0	0.3	29.6	0.3	79.8	0.8
SIDish_r125_z15	43.4	0.4	44.2	0.5		
SIDish_r125_z19	38.9	0.4	38.3	0.4		

Some plots

z Dependence 50 GeV u jet

Some plots (II)

Using the other fit model

Doesn't really work so well, but didn't really expect it to either as we are having 1 jet vs. two jets etc....

Start from scratch

• Use same model as before

 $\alpha = n_1 Z + n_2 B^{n_3} + n_4$

- B dependent term set to 0
- For 50 GeV Jet Fit

 $\alpha = -0.0086 \ Z + 55.360$

• For 100 GeV Jet Fit:

 $\alpha = -0.0108 \ Z + 58.995$

Results

Results (II)

Z dependence

- There is a linear dependence between energy resolution and z
- Both studies tell the same story
 - a longer SiD is better
 - For physics with two jets effect is more pronounced
- B field has little impact
 - one wouldn't expect
- Ron's comment from Monday
 - segmentation, radius and B field all add up here
- Don;t really understand the small differences between 50 and 100 GeV jets ...

- for 4.5/5.0 λ generate a 60 layer version to see a turnover effect (like for the fixed total thickness)
- Generate another set
 - 5.5 λ_{Iron} 30,40,50,60 layers
 - 3.5 λ_{Iron} 30,40,50,60 layers
- That should cover it
- Run a few points using 180 GeV Jets ...

Conclusions

- HCAL seems to say
 - layers/ λ_{Iron} is important
 - need more samples
- ECAL prefers fine segmentation
 - in the first layers
- Depth is a good thing
- A longer detector is better ...

