

ILC - The International Linear Collider Project

The BeamCal Simulation Project Progress Report

Keith Drake, Tera Dunn, Jack Gill, Gleb Oleinik, Uriel Nauenberg
University of Colorado at Boulder

ILC - The International Linear Collider Project

Beam Calorimeter Studies

Two photon process

cross section

about 10⁵ larger than

SUSY cross section.

Serious source of

background for SUSY

if not tagged.

Pointed out by our group around 1998

ILC - The International Linear Collider Project

2 Photon Process

ILC - The International Linear Collider Project

Solenoid field keeps the low energy charged particle in the forward direction. Beam hole is at 7 mrad. Need to add an x field component to move low energy charged particles in the 7 mrad direction. Anti-DiD dipole field proposed by Andrei Seryi.

ILC - The International Linear Collider Project

Beamstrahlung e⁺e⁻ pairs.

Energy deposited in

0.25 x0.25 cm² cells.

ILC - The International Linear Collider Project

Outside Beam Pipe

ILC - The International Linear Collider Project

Shower in Beamcal from 2 \gamma process alone

ILC - The International Linear Collider Project

Beamstrahlung Energy Deposition in a Tile

Tile at start of BeamCal

Tile 3.0 cm in

ILC - The International Linear Collider Project

Beamstrahlung Energy Deposition in a Tile

Tile 4.7 cm in

Tile 6.0 cm in

ILC - The International Linear Collider Project

Consequences of Beamstrahlung Energy Deposition

- Energy Deposition is not Gaussian until one reaches a depth > 3 cms.
- Distribution is very wide and hence affects energy resolution if we subtract an average value.
- This problem is seen in the study how to measure the electron/positron energies. Resolution.

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

Clustering Cuts in Depth and Energy, Example 1 Beamstrahlung +

Beamstrahlung Alone

Electron from 2-photon Subracted Tile Energy

ILC - The International Linear Collider Project

Clustering Cuts in Depth and Energy, Example 2 Beamstrahlung +

Beamstrahlung Alone

Electron from 2-photon

ILC - The International Linear Collider Project

Clustering Cuts in Depth and Energy, Example 3 Beamstrahlung +

Beamstrahlung Alone

Electron from 2-photon Subracted Tile Energy

ILC - The International Linear Collider Project

Energy observed as a function of distance from center of BeamCal

ILC - The International Linear Collider Project

Energy Deposition versus r and \phi

 Φ =0.0 Φ =30.0

ILC - The International Linear Collider Project

Energy Deposition versus r and \phi $\Phi = 180.0$

 $\Phi = 150.0$

ILC - The International Linear Collider Project

Fraction of Energy Observed within a Radius of 0.5 cm of Electron Path

ILC - The International Linear Collider Project

Fraction of Energy Observed within a Radius of 1.0 cm of Electron Path

ILC - The International Linear Collider Project

Fraction of Energy Observed within a Radius of 2.0 cm of Electron Path

ILC - The International Linear Collider Project

Fraction of Energy Observed within a Radius of 3.0 cm of Electron Path

ILC - The International Linear Collider Project

Energy Resolution of High Energy Electrons {E(measured)- E(expected)} /E(expected)

Best Possible Resolution
No Beamstrahlung effects
included

ILC - The International Linear Collider Project

Energy Resolution of High Energy Electrons {E(measured)- E(expected)} /E(expected)

Energy Resolution with
Beamstrahlung Included.
Average Substracted. Only
energy deposited in a 25 mm
radius from maximum. Sum
energy over full Beamcal
thickness.

Effect of Beamstrhalung fluctuation in resolution clearly has an effect

ILC - The International Linear Collider Project

Energy Resolution of High Energy Electrons {E(measured)- E(expected)} /E(expected)

Energy Resolution. Beamstrahlung Included and Average Substracted. Measurements from 3.0 cm in and Including only cells with more than 10 MeV energy deposited.

ILC - The International Linear Collider Project

Energy resolution of the reconstruction of the electrons from 2-photon events including the effects of beamstrahlung

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

Reason for Resolution Tail

Measured Energy loss due to cuts

ILC - The International Linear Collider Project

Work to be Done

- Understand the low energy tails of the energy resolution distribution. Develop a better scan.
- What is the missing Pt distribution of 2 photon events given the resolution.
- Study the resolution of new geometries.

ILC - The International Linear Collider Project

Work to be Done

- > Optimize signal to Background.
- > Check all our Calculations.
- Find other analysis techniques that reduce the beamstrahlung fluctuations and hence improve the signal resolution.
- Study the effect of this analysis on SUSY signal.

 Missing Pt limits.

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

Study of a Scintillator Calorimeter

We are simulating a scintillator based calorimeter where the tiles are offset in alternate layers. We are making now a great deal of progress.

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

Track Following into the Calorimeter

ILC - The International Linear Collider Project

Cluster Correlation with Charged Tracks Success Probability

ILC - The International Linear Collider Project

The Chi-Square Structure

 μ_i = average photon energy deposited in ith tile σ_i = standard deviation in the energy deposition

$$H_{ij} = \sigma_i \sigma_j$$

$$\chi^2 = \sum_{i,j=1}^{9} (x_i - \mu_i) H_{ij}^{-1} (x_j - \mu_j)$$

where x_i is the energy deposited by the shower being tested in the ith tile.

ILC - The International Linear Collider Project

We are now in the middle of trying to separate photon clusters by means of the chi-square method. Hard problem. Crucial aspect of pattern recognition and calorimeter resolution.

ILC - The International Linear Collider Project

Fitted γ direction from shower energy distribution 20 GeV Z vs R 50 GeV

ILC - The International Linear Collider Project

Study of the Characteristics of Silicon Photomultipliers

ILC - The International Linear Collider Project

New Silicon Photo-Detectors

Photonique, SA
Pulsar, Russia
+

Moscow Eng.

Physics Inst.

Bias Voltage ~40 volts

2mm

Scintillator performance

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

2mm scint., cosmic rays 0 < t < 200 nsec 20 < t < 70 nsec

ILC - The International Linear Collider Project

Most Probable Values (Coulombs)				
(1.0352 ± 0.0011)e-12	(1.0385 ± 0.0010)e-12	(1.0365 ± 0.0010)e-12	(1.0381 ± 0.0010)e-12	(1.0261 ± 0.0011)e-12
(1.0332 ± 0.0011)e-12	(1.0325 ± 0.0011)e-12	(1.0297 ± 0.0011)e-12	(1.0321 ± 0.0011)e-12	(1.0263 ± 0.0011)e-12
(1.0372 ± 0.0010)e-12	(1.0323 ± 0.0010)e-12	(1.0330 ± 0.0011)e-12	(1.0304 ± 0.0011)e-12	(1.0245 ± 0.0012)e-12
(1.0345 ± 0.0010)e-12	(1.0322 ± 0.0010)e-12	(1.0395 ± 0.0010)e-12	(1.0337 ± 0.0011)e-12	(1.0282 ± 0.0012)e-12

to SiPM

ILC - The International Linear Collider Project

Sipm attached to the center of surface of the scintillator tile

ILC - The International Linear Collider Project

New Nat. Inst. PHA

ILC - The International Linear Collider Project

Special Budgetary Issue

ILC R&D in DOE (Paul Grannis) awarded us a \$20 K late award that could not be sent to CU but could only be deposited at SLAC because of the timing.

I request that I use these funds for BaBar work and be allowed to used BaBar funds deposited in Colorado for ILC R&D work.

ILC - The International Linear Collider Project

Because ILC R&D funds become available in ~ July the funds cover 2 years of BaBar work

1 year of differential housing costs for Nagel \$5 K 1 year travel costs from Colorado to SLAC \$5 K

The total award from ILC R&D is \$53 K

ILC - The International Linear Collider Project

The University has contributed to my research a total of \$38 K towards support of a Research Associate since I have become Chair of the Boulder Faculty Assembly and my research time is now limited. I propose to use these and the ILC R&D funds towards the Research Associate if DOE accepts the ILC-BaBar fund exchange.

ILC - The International Linear Collider Project

The Calorimeter

Modules

ILC - The International Linear Collider Project

Removal of Charged Track Hits

Jason Gray, Jiaxin Yu

ILC - The International Linear Collider Project

Pattern Recognition of Showers

ILC - The International Linear Collider Project

Chi Square Separation, 1st order

ILC - The International Linear Collider Project

2 Photon Process

Discussion in Beam Cal section at end

ILC - The International Linear Collider Project

Study the efficiency to observe the electron and positron of the two photon process above the beamstrahlung background

Essential to remove this background in the study of Supersymmetry in the dynamic region of low Pt. Needed to measure the masses.

ILC - The International Linear Collider Project

Testing GEANT 4.0

No field, 50 MeV muons

No field, 50 GeV muons

ILC - The International Linear Collider Project

50 MeV, no field, forward

50 MeV, solenoid on, forward

ILC - The International Linear Collider Project

Beamstrahlung Distribution with Solenoid + Anti-DiD

ILC - The International Linear Collider Project

GEANT 4.0 seems to be working properly We have fixed various bugs in collaboration with SLAC team.

All Simulation is work in progress.

ILC - The International Linear Collider Project

Hardware Studies

Keith Drake, Elliot Smith

ILC - The International Linear Collider Project

Long Term Tests of Scint. Fiber Stability

ILC - The International Linear Collider Project

Latest Pulse Distribution from Photonique/Russia

ILC - The International Linear Collider Project

Pulse National Inst.

ILC - The International Linear Collider Project

Our Measurements

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

Cosmic Rays in a 1 cm Thick Scintillator

20 < t < 70 nsec

0 < t < 200 nsec

ILC - The International Linear Collider Project

1cm scint

ILC - The International Linear Collider Project

Pulse Height versus Temperature

Gain of SiPD Increases ~x4

ILC - The International Linear Collider Project

2 mm scint

ILC - The International Linear Collider Project

By time tagging we are observing the photons arriving in time sequence. Possibility to use this to improve resolution. Need beam tests to check this hypothesis.

ILC - The International Linear Collider Project

Work still in progress. Comparison with Russian plots indicate 100 Mhz x 4 (measuring pulse height every 2.5 nsec) not enough resolution.

National Instruments has just released a 2 Gigahertz, unit. Using our trick of x4 will allow us to scan every 0.125 nsec. A demo is on its way here to check whether 8 bits resolution is good enough.

ILC - The International Linear Collider Project

Conclusions

A new revolution in photo-detection. A lot of improvements still possible. A lot of work to be done in this area. If one is bold and reckless one may say that "It may revolutionize calorimetry resolution."

ILC - The International Linear Collider Project

Conclusions

Our simulation work with the undergraduates is moving ahead. A lot of work needs to be done still. Need manpower help. Most of the pieces are in place to study Z and W mass resolution.

ILC - The International Linear Collider Project

ILC - The International Linear Collider Project

We helped with the organization of the Linear Collider Workshop and the various ALCPG meetings up to but not including Vancouver

