
Seed-Based
TrackTrack

Reconstruction

Richard Partridge
Brown / SLAC

May 2, 2008

Track Reconstruction Overview
The 3 Phases of Track ReconstructionThe 3 Phases of Track Reconstruction

Hit Digitization
Turn GEANT energy deposits (SimTrackerHits) into hits (TrackerHits)

TrackerHits provide the hit position and covariance matrix used for track finding

Full digitization models detailed geometry in GEANT and simulates charge
collection, electronic digitization, and clustering of hit strips (see Tim’s talk)
Vi l i di id li d / di k i i l ll iVirtual segmentation divides cylinders / disks into virtual sensors allowing
different segmentation schemes to be compared without rerunning GEANT

Track Finding
Finds collections of TrackerHits that define a track
See Rob Kutschke’s talk at the SiD workshop for a survey of SiD algorithms
This talk focuses on the SeedTracker package (C. Deaconu and RP)

Track Fitting
Fits the track hits to determine the helix parameters and covariance matrix
Weight matrix fitter does a χ2 fit including multiple scattering correlations

Richard Partridge 2

Weight matrix fitter does a χ fit including multiple scattering correlations
Kalman filter fitter provides adaptive fitting to mutliple scattering

SeedTracker Philosophy
Track finding begins by forming all possible 3 hit track seedsTrack finding begins by forming all possible 3 hit track seeds
in the three “Seed Layers” specified by the user

Brute force approach to finding all possible track seeds
Helix formed from seed hits serves as the starting point for track finding

Track finding is guided by a set of user defined “Strategies”
A strategy defines layers to be used, their roles, and constraints (e.g. pT>x)gy y , , (g pT)

All pattern recognition code is agnostic as to the type of hit
No differentiation between pixel or strip, barrel or forward sensors

A f h li fi H li lT kFi l l lA fast helix fitter, HelicalTrackFitter, plays a central role
This is the only piece of code that needs to understand the differences between
pixels and strips, barrels and disks, etc.

Multiple Scattering must be accounted for in track finding
Superb intrinsic pixel/strip resolution ⇒ MS errors will typically be dominant

All decisions based on χ2 from fits and constraints (pT>x)

Richard Partridge 3

All decisions based on χ from fits and constraints (pT>x)
No internal parameters or tuning is required if tracker geometry changes

Seedtracker Algorithm
SeedTracker undertakes the following steps:SeedTracker undertakes the following steps:

1. Organize hits1. Organize hits
2. Create seeds
3. Fit seeds
4. Confirm seeds
5. Extend seeds
6. Merge seeds
7. Create Tracks

These steps are described in more detail by the slides that
follow

Richard Partridge 4

Step 1: Organize Hits
Before calling the SeedTracker driver HelicalTrackHits mustBefore calling the SeedTracker driver, HelicalTrackHits must
be created and stored in the event

This is best done by calling HelicalTrackHitDriver

HelicalTrackHits are used to isolate SeedTracker from the
differences in the implementations of TrackerHits
Code currently exists to create HelicalTrackHits from bothCode currently exists to create HelicalTrackHits from both
“Tim’s hits” (full digitization, planar geometry) and “Dima’s
hits” (virtual segmentation)
SeedTracker uses a HitManager class to organize and manage
the HelicalTrackHits

Primarily used to allow fast retrieval of hits for a given layerPrimarily used to allow fast retrieval of hits for a given layer
Layers are specified by their detector name (TrackerBarrel, VertexForward,
etc.), layer number (0, 1, 2, …), and BarrelEndcapFlag (BARREL,
ENDCAP_NORTH, ENDCAP_SOUTH)

Richard Partridge 5

Step 2: Find Seeds
Strategy must have exactly 3 “Seed Layers”Strategy must have exactly 3 Seed Layers
To find all possible seeds, SeedTracker loops over all viable
combinations of 3 hits in the 3 seed layersy
Reduce the combinatorics by eliminating hit combinations
inconsistent with pT and impact parameter constraints

It t ll hit i th fi t d lIterate over all hits in the first seed layer
Discard hits in the second seed layer not consistent with the first layer hit and
a helix having the minimum pT and maximum impact parameter
Similarly discard hits in the third seed layer not consistent with the secondSimilarly, discard hits in the third seed layer not consistent with the second
layer hit and a helix having the minimum pT and maximum impact parameter
Improvements are probably possible – have not yet found general solution

Hit
Maximum d0

Richard Partridge 6
Minimum pT

Excluded

Step 3: Fit Seeds
First fit a helix to the 3 seed hits without MS errorsFirst fit a helix to the 3 seed hits without MS errors

First determination of the helix parameters ω ≡ 1/R, d0, φ0, z0, and tan(λ)

Calculate the MS errors for each hit using this helix
Perform a second helix fit including MS errors
If necessary, calculate a constraint χ2 to estimate the increase
i 2 d d t ll i t li ith th t i tin χ2 needed to pull into compliance with the constraint

Constraints: pT > pT
min , |d0| < d0

max, |z0| < z0
max

Example: if (|z0| > z0
max) χ2 = χ2 + (|z0| - z0

max)2 / σ2(z0)

Reject seeds that fail the χ2 cut
χ2 cut is applied to the sum of the fit χ2 and the constraint χ2

Richard Partridge 7

Detour: Helix Finding
First perform a circle fit using x y coordinates of all hitsFirst perform a circle fit using x,y coordinates of all hits

Kariaki algorithm used to determines track parameters ω ≡ 1/R, d0, and φ0

Find the path lengths s along the track from the point of
closest approach to each hit

Algorithm will follow curling tracks as long as the track direction changes by
<π between adjacent hits in z

Determine the z0 and tan(λ) track parameters
z = z0 + s * tan(λ)
If there are >1 pixel hits do a straight-line fit using only the pixel hitsIf there are >1 pixel hits, do a straight line fit using only the pixel hits
If there are 0 pixel hits, do a ZSegment fit using all strip hits
If there is 1 pixel hit, treat the pixel hit as a short strip and do a ZSegment fit

Richard Partridge 8

Detour: ZSegment Fit
Strips are bounded in z ⇒ for 2 or more strip layers there areStrips are bounded in z ⇒ for 2 or more strip layers there are
constraints on the helix paramaters z0 and tanλ

Results in a polygonal allowed region in z0 – tanλ parameter space
“Fit parameters” are taken from centroid of allowed region
Covariance matrix calculated assuming all points in allowed region of
parameter space are equally probable

1 55

1 45

1.5

1.55
Allowed Region
Centroid
Chi^2 = 1 Contour
Actual

1 35

1.4

1.45

ta
n(

la
m

bd
a)

1 25

1.3

1.35

Richard Partridge 9

1.25
-120 -70 -20 30 80

Z0 (mm) z0 Residual Distribution

Detour: Multiple Scattering Errors
SeedTracker constructs a model of the tracker materialSeedTracker constructs a model of the tracker material

Each tracking element listed in the compact.xml geometry description is
modeled as either a cylinder or disk

M l i l i l l d b d hi d lMultiple scattering errors are calculated based on this model
For each hit, find all material cylinders and disks encountered between the
DCA and the hit using the current estimate of the helix parameters

i h f i l d i h i l l h iDetermine the amount of material traversed in each material layer that is
crossed, taking into account track angle, and calculate the MS contribution
Add all multiple scattering errors for this hit in quadrature

C l i i h S i d f k fi diCorrelations in the MS are ignored for track finding
Essential for track fitting, where the accuracy of the helix error matrix is of
considerable importance

Richard Partridge 10

Step 4: Confirm Seed
Confirm the track seed by trying to add additional hitsConfirm the track seed by trying to add additional hits

Goal is to quickly eliminate seeds that don’t correspond to real tracks
Hits are not necessarily required on every confirmation layer – could have 2
confirmation layers and require ≥1 confirmation hit between the 2 layersconfirmation layers and require ≥1 confirmation hit between the 2 layers
One confirmation hit is typically sufficient

Confirmation algorithm:
For the first confirmation layer, sort hits in this layer by their x-y distance
from the helix
Add the closest hit to the current helix and refit

2If an acceptable χ2 is found, keep this hit combination
Loop over the sorted confirmation layer hits until the increase in the circle fit
χ2 exceeds the χ2 cut
If th b t fit f thi fi ti l i th 2 b th th b dIf the best fit for this confirmation layer increases the χ2 by more than the bad
hit cut, also keep the input seed
Repeat for any additional confirmation layers
Discard seeds where the minimum number of confirmation hits are not found

Richard Partridge 11

Discard seeds where the minimum number of confirmation hits are not found

Step 5: Extend Seed
Extend the seed to include hits in additional tracking layersExtend the seed to include hits in additional tracking layers
Typically include all additional layers track might traverse
Extend seed algorithm is essentially the same as the algorithmExtend seed algorithm is essentially the same as the algorithm
for confirming seeds

Strategy specifies the total number of hits required for a valid track

Richard Partridge 12

Step 6: Merge Seeds
The extend algorithm produces a collection of track seeds thatThe extend algorithm produces a collection of track seeds that
satisfy all of the requirements specified by the strategy
If multiple strategies are defined, steps 2-5 are repeated for p g p p
each strategy
There will generally be multiple similar track seeds for each
real trackreal track
Duplicate track seeds are eliminated by the merge algorithm

Any pair of track seeds sharing more than one hit are merged
If one track seed has >1 additional hit, then the seed with the most hits is kept
If one track seed has 1 additional hit, then the seed with the larger number of
hits is kept unless the difference in χ2 between the two track seeds exceeds the
bad χ2 cut, in which case the track seed with the better χ2 is kept
If the pair of track seeds have the same number of hits, then the seed with the
lower χ2 is kept

Richard Partridge 13

Step 7: Create Tracks
Tracks are created for the track seeds that survive the mergeTracks are created for the track seeds that survive the merge
algorithm
The track parameters and covariance matrix are taken from p
the last helix fit that includes all of the hits assigned to the
track
The track also contains the list of HelicalTrackHits assignedThe track also contains the list of HelicalTrackHits assigned
to the track seed

This list can then be used by track fitting algorithms

Richard Partridge 14

First Results
Pythia qqbar events (uds)Pythia qqbar events (uds)
Outside in algorithm seeded from tracker barrel layers 3, 4, 5
Inside out algorithm (vertex seeded) also works

Richard Partridge 15

MC Tracks

χ2 Distribution
Tracks have typically 10 r φ and 5 z measurementsTracks have typically 10 r-φ and 5 z measurements
Helix has 5 parameters, so fits have ~10 DOF
χ2 distribution looks reasonableχ distribution looks reasonable

500

550 Entries : 3394
 Mean : 11.348
 Rms : 10.125

Chi squared

350

400

450

500 s 0 5

200

250

300

0

50

100

150

Richard Partridge 16

0 10 20 30 40 50 60 70 80 90 100
0

Track Purity
Hits contains a list of MC particles that contributed to the hitHits contains a list of MC particles that contributed to the hit
Track purity is the fraction of hits on the track due to the MC
particle with the most hits on the trackp

Purity = 1 if all hits are from the same MC particle

+

Hits Fraction Ave Purity

Jets 6→→−+ ttee

7 1.3% 76.3%
8 0.2% 96.9%
9 7.7% 99.6%

10 90 9% 99 7%10 90.9% 99.7%
All 100% 99.4%

Richard Partridge 17

Using SeedTracker
The SeedTracker HelicalTrackFitter and ZSegmentFitterThe SeedTracker, HelicalTrackFitter, and ZSegmentFitter
source code are in CVS at:

org.lcsim.contrib.seedtracker
org.lcsim.fit.helicaltrack
org.lcsim.fit.zsegment

Code is still in active developmentp
Please let Cosmin Deaconu (cozzyd@stanford.edu) and RP
(richp@slac.stanford.edu) know if you are using the code so we can keep you
apprised of updates / changes

The next 3 slides show example code for setting up a strategy
and an example driver for SeedTracker

For brevity some preamble info was removed – the full version of this exampleFor brevity, some preamble info was removed the full version of this example
code can be found at org.lcsim.contrib.partridge.example

Richard Partridge 18

Sample Code I: Setting up a Layer List
public class MyStrategy {public class MyStrategy {

private List<SeedStrategy> _strategylist = new ArrayList<SeedStrategy>();

public MyStrategy() { p y gy() {

// Setup the list of layers to be used and their role (seed, confirm, or extend)
BarrelEndcapFlag barrel = BarrelEndcapFlag.BARREL;
List<SeedLayer> lyrlist = new ArrayList<SeedLayer>();
lyrlist.add(new SeedLayer("VertexBarrel",0,barrel,SeedType.Extend));
lyrlist.add(new SeedLayer("VertexBarrel",1,barrel,SeedType.Extend));
l li t dd(S dL ("V t B l" 2 b l S dT E t d))lyrlist.add(new SeedLayer("VertexBarrel",2,barrel,SeedType.Extend));
lyrlist.add(new SeedLayer("VertexBarrel",3,barrel,SeedType.Extend));
lyrlist.add(new SeedLayer("VertexBarrel",4,barrel,SeedType.Extend));
lyrlist add(new SeedLayer("TrackerBarrel" 0 barrel SeedType Extend));lyrlist.add(new SeedLayer(TrackerBarrel ,0,barrel,SeedType.Extend));
lyrlist.add(new SeedLayer("TrackerBarrel",1,barrel,SeedType.Confirm));
lyrlist.add(new SeedLayer("TrackerBarrel",2,barrel,SeedType.Seed));
lyrlist.add(new SeedLayer("TrackerBarrel",3,barrel,SeedType.Seed));

Richard Partridge 19

y (y (, , , yp));
lyrlist.add(new SeedLayer("TrackerBarrel",4,barrel,SeedType.Seed));

Sample Code II: Creating a Strategy
// Create the “OutsideInBarrel” strategy and set its parameters// Create the OutsideInBarrel strategy and set its parameters
SeedStrategy outsideinbarrel = new SeedStrategy("OutsideInBarrel",lyrlist);
outsideinbarrel.putMinPT(1.0); // Set minimum pT at 1 GeV
outsideinbarrel putMaxDCA(1 0); // Set maximum d0 at 1 mmoutsideinbarrel.putMaxDCA(1.0); // Set maximum d0 at 1 mm
outsideinbarrel.putMaxZ0(1.0); // Set maximum z0 at 1 mm
outsideinbarrel.putMinConfirm(1); // Require at least 1 confirmation hit
outsideinbarrel putMinHits(7); // Require at least 7 total hitsoutsideinbarrel.putMinHits(7); // Require at least 7 total hits
outsideinbarrel.putMaxChisq(50.); // Set maximum chi^2 at 50
outsideinbarrel.putBadHitChisq(15.); // Set chi^2 change for suspect hits

_strategylist.add(outsideinbarrel); // Add the strategy to our strategy list
}

public List<SeedStrategy> getStrategies() { // Method to return the strategy list
return _strategylist;

Richard Partridge 20

}
}

Sample Code III: Tracking Driver
public class MyTrackerDriver extends Driverpublic class MyTrackerDriver extends Driver
{

public MyTrackerDriver()
{{

add(new VSExampleDriver()); // Add a hit digitization driver

HelicalTrackHitDriver hitdriver = new HelicalTrackHitDriver();
hitdriver.addCollection("StandardTrackerHits",HitType.VirtualSegmentation);
add(hitdriver); // Add a driver to make the HelicalTrackHits used by SeedTracker

M St t t t li t M St t () // C t th S dT k t t iMyStrategy strategylist = new MyStrategy(); // Create the SeedTracker strategies

add(new SeedTracker(strategylist.getStrategies())); // Add the SeedTracker driver
}}
public void process(EventHeader event)
{

super.process(event);

Richard Partridge 21

p p ();
return;

}
}

Forward Tracking
Code currently implements barrel layers where you measureCode currently implements barrel layers where you measure
the azimuthal coordinate and have either a z measurement
(pixels) or a z segment (strips)
Working on implementing forward layers where the
measurements coordinates are r and r*φ

Extending hit infrastructure to handle 3D stereo hits constructed from pairs ofExtending hit infrastructure to handle 3D stereo hits constructed from pairs of
strip hits
Need to account for separation of layers and track angle

Hit position will change depending on angle of track

Small modification to s-z fitting required since measurement coordinate is r,
not z

szz λtan0 +=

rz dr
dz σσ ~

0

Richard Partridge 22

Future Plans
Test tracking for full digitization / planar geometry whenTest tracking for full digitization / planar geometry when
events are available
Finish up a few loose ends for forward trackingp g
Continue to add diagnostics, tune up tracking performance,
improve documentation, etc.
Integrate track finding and track fitting

Nick Sinev’s weight matrix fitter (χ2 based fitter)
Caroline Milstein’s Kalman filter fitter (developed for muon reconstruction)
Rob Kutschke is developing a Kalman filter fitter using the TRF packages

Richard Partridge 23

