Calorimeter Calibration

Two approaches

Conservation of $E_{\rm CM}$

- Require $E_{\text{ECAL}} + E_{\text{HCAL}} = E_{\text{CM}}$ for e.g. ttbar events
- Problem: Missing E
- Tune coeffs to "rotate" cloud
- Implemented in Calibprocessor

1/5

Seperate Calibration of ECAL and HCAL

- Use e.g. single γ 's for ECAL and K_I^0 for HCAL
- Divide Monte Carlo Energy by visible Energy
- Caution: Containment

() 14th May 2008

Comparison on $Z \rightarrow uds$

Energy Conservation (LDC01_06Sc_p01)

Only Sum of Calorimetric Energy used, no PFlow

$$c_1 = 50.9089$$

 $c_1 = 101.806$
 $c_1 = 31.5764$

$$\mu =$$
 93.36GeV, $\sigma =$ 5.75 GeV, $\frac{\sigma}{\mu} =$ 6.1% 500 GeV t~~t~~ Full detector

() 14th May 2008

2/5

Comparison on $Z \rightarrow uds$

Single Particle Calibration (LDC01_06Sc_p01)

Only Sum of Calorimetric Energy used, no PFlow

$$c_1 = 41.4774$$

 $c_1 = 84.0371$
 $c_1 = 29.909$

$$\mu=$$
 80.15GeV, $\sigma=$ 4.64 GeV, $\frac{\sigma}{\mu}=$ 5.8% $\gamma:$ 50, 100 GeV; $\mathrm{K^0_L}$ 50 GeV; 80° $<$ $\Theta<$ 100°

() 14th May 2008

3/5

Angular dependency of E_{rec}/E_{gen}

Ratio of E_{rec}/E_{gen} depends also on Θ , geometric effect

() 14th May 2008

last Slide

- Where do the large differences between first and second approach come from?
- Calibration methods are sensitive to angular cuts. (Where do i calibrate)
- Energy dependency
- Containment
- The Energy conservation method seems to work better.

5/5