

Detector Optimization using PandoraPA 14.05.2008 M. Stanitzki

What is LDC00Sc ?

- Tracker radius=1.69 m
- Tracker Z=2.73 m
- ECAL SiW 30+10 layers, 1x1 cm tiles
 - 1.4 mm/4.2 mm W + 2.5mm Gaps
- HCAL Fe-Scint 40 layers 3x3 cm tiles
 - 18 mm Iron + 7.5 mm Gap
- 4 T Field
- Basically the old Tesla Design

What is SID-ish

- Tracker radius=1.25m
- Tracker Z=1.7 m
- TPC tracker
- ECAL SiW 20+10 layers, 1x1 cm tiles
- HCAL Fe-Scint 40 layers 3x3 cm tiles
- Same Calorimeter layout as LDC00Sc (besides ECAL 30+10->20+10)
- 5 T Field

Short Addenda

- Results for 45 GeV & 100 GeV jets
- Numbers quoted are
 - cos(Thrust) < 0.7 : Barrel Events

- using
$$\alpha$$
 in % $\frac{\sigma_E}{E} = \frac{\alpha}{\sqrt{2}}$

- There are a set of caveats
 - Calibrate Response for different detector variations
 - Calibration can be retuned with existing samples

Summary from RAL talk

- Radius is important
 - 1.25->1.5 meters
 - ~ 1 % (rough estimate)
- Thickness of the ECAL
 - going from 20+10 to 30+10
 - $\sim 2 \%$ (rough estimate)
- B field has less impact
 - at Z pole 4 T->5 T < 1 %
 - at 200 GeV 4T->5 T 4%
 - not always gaining by raising B field -> loopers
 - Sweet spot for B and R !

Summary plot

Marcel Stanitzki

News since then

- Run a version with the RPC's both for
 - LDC00
 - SIDish_RPC
- basically the same as LDC00Sc and SIDish
- Didn't change any of the cuts

Sciptillator	Detector	91 GeV		200 GeV		RPC
		α%	Error	α%	Error	
Scintillator	LDC00Sc	24.6	0.3	29.7	0.5	
	LDC00	27.0	0.5	31.7	0.6	
	SIDish	27.9	0.4	35.4	0.7	
	SIDish_rpc	31.7	0.5	38.9	0.7	

Some more points

- the Pattern recognition in the TPC really matters
 - Kink finding, V^o
 - See Ron Cassell's studies
- RPC's do worse than Scintillators (3 %)
 - Independent of radius
 - Independent of segmentation
- Reasons ?
 - Algorithms might no be optimal for RPC's
 - Impact of hadronic shower response gas/scintillator
 - again compare Ron Cassell's studies

Putting it together

	SiDish	SID	LDC00Sc	Comments
Starting point (200 GeV qq)	35%	46%	30%	from Pandora/ Memory
- RPC (3%)		43%		from Pandora
6 more layers in HCAL (2 %)		41%		guesstimated
+TPC Tracking tricks (2 %)		39%		guesstimated
+10 layers in ECAL (2 %)	33%	37%		from Pandora
+0.25 m radius (1 %)	32%	36%		from Pandora
+0.2 m radius – 1T B field (2 %)	30%	34%	30%	from Pandora

Just an exercise with plenty of caveats !

What's next

- Studying HCAL segmentation (first results should be ready on Wednesday ...)
- Impact of ECAL depth and segmentation (Idea raised by Harry Thursday night)

