

GDE Program for the ILC Technical Design Phase (TDP)

Marc Ross for: Akira Yamamoto, Nick Walker GDE Project Managers

Risk Reduction (Cost, schedule, technical) and Cost Reduction through R&D and design work

[•] June 30. 2008

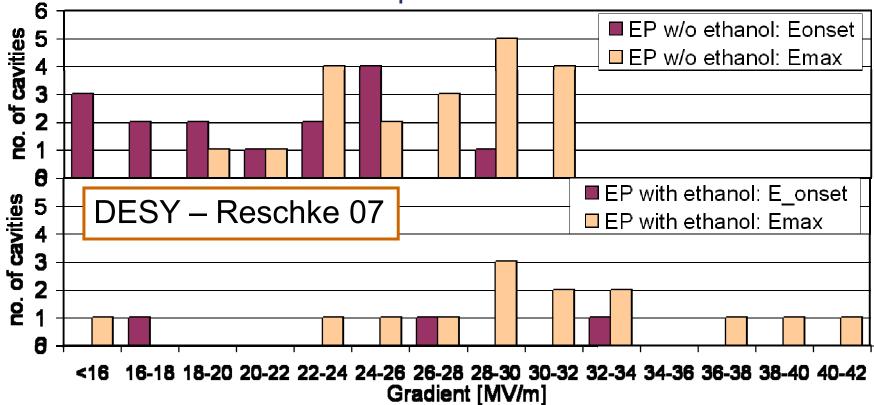
M. Ross for PM Global Design Effort

Global Design Effort TDP Goal:

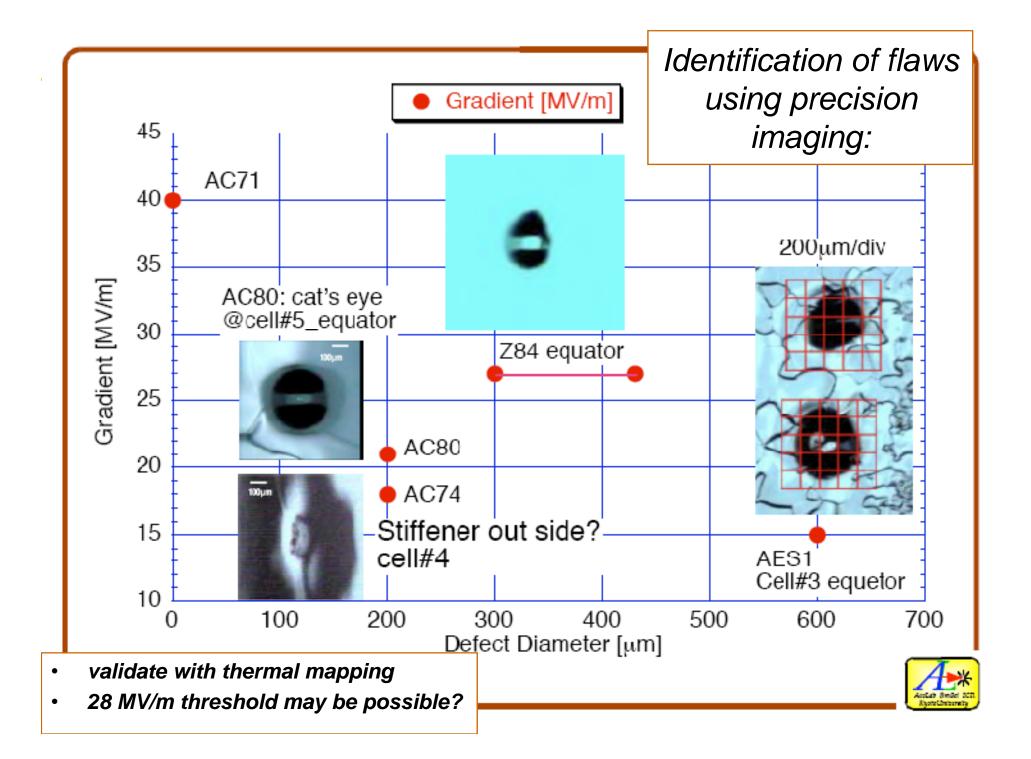
- Develop an 'ILC Project Proposal' by mid-2012
 - A complete and updated technical description
 - Results from critical R&D programs
 - One or more models for a Project Implementation Plan that include in-kind contribution schemes
 - An updated and robust VALUE estimate and construction schedule
- TD Phase 1 (July 2010)
 - Critical R & D
 - Potential for cost reduction
 - Re-baseline to prepare for technical design

		calendar yea	r 2008	000000000000000000000000000000000000000	2009	2010
TD Phase 1		Tech. Design Phase I				
	Value	Siting				
Schedule		Shallow site option impact studies				
Ochedule	engineering	Definition of uniform site specs.				
	Value _	Collider Design Work				
		Definition of minimum machine				
5	engineering	Minimum machine & cost-reduction studies				
Published in:		Review TDP-II baseline				
ILC Research and	Global	Publish TDP-I interim report				C
Development Plan	Project Plan	Project Implementation Plan				
		Review and define elements of PIP				
for the Technical Desigr	1	Develop mass-production scenarios (models)				
Phase		Develop detailed cost models				
Release 2, June 2008 (next release 6 months)	High	SCRF Critical R&D				
	Gradient	CM Plug compatibility interface specifications				
		S0 50% yield at 35 MV/m				
	Cryomodule	Re-evaluate choice of baseline gradient S1-Global (31.5MV/m cryomodule @ KEK)				
Describe the global	test	S2 RF unit test at KEK				
U		S1 demonstration (FNAL)				
context for these	r	S2 RF unit at FNAL				
activities 🗪	Systems	9mA full-beam loading at TTF/FLASH (DESY)				
	Test	Demonstration of Marx modulator				
		Demonstration of cost-reduced RF distribution				
Show that the ART	Electron	Other critical R&D				
program supports	Cloud -	DR CesrTA program (electron-cloud)				
and is consistent with GDE TDP1 plan	Olouu	DR fast-kicker demonstration				
	Precision	BDS ATF-2 demagnification demonstration				
		Electron source cathode charge limit demonstra	ation			
	beam control	Positron source undulator prototype				
Plan		Positron source capture device feasibility studie	s			
		RTML (bunch compressor) phase stability demo	D			

High Gradient:


Motivation:

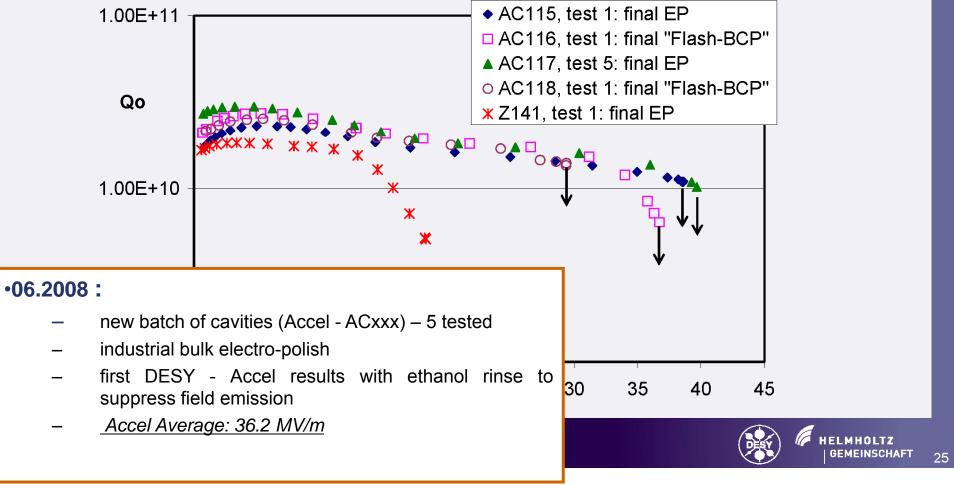
- large potential impact on the cost of the ILC.
- RDR gradient choice is 35 MV/m in vertical test
- present average: <u>31.5 MV/m</u>


Strategy:

- 1: research cause of gradient limits a) field emission, b) localized quench, c) high cryo losses
- 2: develop countermeasures (JLab, KEK, DESY, Saclay) a) final rinses b) precision imaging/repair c) baking
- 3: verify counter measures
- 4: integrate statistics

Field Emission (reduced w/final ethanol rinse) \rightarrow Localized quench

- Note reduced number of field emission 'Eonset' entries in lower plot
 - results from 15 cavities (DESY Zanon)
 - some cavities tested many times
- Gradient limits now dominated by localized quench \rightarrow
 - Thermal (DESY/FNAL/JLAB) / imaging (KEK) diagnostics very promising
 - May be able to identify flaws after electro-polishing before vertical test



DESY – Reschke 07

6th cavity production – rf results

- excellent + promising first results including first Plansee nine-cell (AC115)
- Z141 as first cavity with surfaces damages after fabrication under investigation

Americas	US FY06 (actual)	US FY07 (actual)	US FY08	US FY09	US FY10	(to June 2010)	US FY11	US FY12
Cavity orders	22	12		10	10	52	10	10
Total 'process and test' cycles		40	5	45	30	113	30	30
Asia	JFY06 (actual)	JFY07 (actual)	JFY08	JFY09	JFY10		JFY11	JFY12
Cavity orders	8	7	8	25	15	44	39	39
Total 'process and test' cycles		21	40	75	45	147	117	117
Europe	CY06 (actual)	CY07 (actual)	CY08	CY09	CY10		CY11	CY12
Cavity orders	60	8		834		902		
Total 'process and test' cycles		14	18	26	30	73	380	406
Global totals								
Global totals - cavity fabrication	90	27	8	869	25	997	49	49
Global totals - cavity tests		75	65	135	175	333	501	501

Cavities and Cavity testing: 2006 – 2012

- Results from Europe (DESY) with strong expertise, mature infrastructure and mature industrial suppliers dominate
- Americas (FNAL/ANL) and Asia infrastructure coming online now (many 07 tests < 20 MV/m)</p>
- Global plan has reduced emphasis on blind, cyclic processing; more emphasis on developing diagnostics and countermeasures

Cryomodule Test – checking global 'plug compatibility'

Goal:

- R&D on the Cryomodule facilitates the development of a detailed ILC Project Implementation Plan
 - including an achievable project schedule and plan for competitive industrialization in all regions.
- assume ILC will require a flexible design based on modular sub-components.

Strategy:

- provide framework for technical and industrial development
 - Specify engineering interfaces between Cryomodule sub-components
 - and if possible within them

Plan:

- Assemble and test a high-performance (31.5 MV/m average) cryomodule at KEK using components from each region (TDP 1)
 - 2 cavities from US, 2 from EU, 4 from Asia

SCRF Linac Systems Test – DESY/FLASH

Goal:

- Demonstrate precision accelerator control in nominal ILC conditions
 - high gradient, full beam loading: 31MV/m, 9 mA, 5Hz
 - Achieve nominal performance specifications in realistic conditions → energy spread, stability etc
- Test higher order mode absorbers, cryo system, instrumentation...

Strategy:

- DESY FLASH/TTF is the *only* suitable test facility available during TDP1
 - scale, beam parameters, instrumentation etc
 - testing also supports ongoing DESY projects / programs

Status:

- DESY led, KEK, FNAL are part of the team started March 2008
- To be complete by March 2009.
- Systems development in all 3 regions in TDP2 (DESY, FNAL, KEK)

Accelerator Test Facilities

• CesrTA - Control and mitigation of electron cloud effects

- Global collaboration led by Cornell:
 - KEK: support for wiggler vacuum chamber, implementation of beam size monitors
 - UK (Cockroft): coordination and simulation
 - CERN: integration with proton accelerator electron cloud R & D
- Strategy:
 - Test: vacuum chamber coatings, design, instrumentation and surface modeling
 - Test: beam dynamics simulations

• ATF / ATF2 – control and monitoring of precision beams

- Global Collaboration led by KEK and SLAC:
 - Based loosely on the ATF collaboration MOU
 - Strong participation from all regions; a rough model of an in-kind ILClike project
- Strategy:
 - Test demagnification optics, tuning process and instrumentation with the ultra-low emittance ATF beam
 - (2 pm-rad vertical normalized emittance)

ilc.

Test Facility Milestones

Test Facility	Deliverable	Date						
Optics and stabi	lisation demonstrations:							
ATF	Generation of 1 pm-rad low emittance beam	2009						
ATF-2	Demonstration of compact Final Focus optics (design demagnification, resulting in a nominal 35 nm beam size at focal point).							
	Demonstration of prototype SC and PM final doublet magnets	2012						
	Stabilisation of 35 nm beam over various time scales.							
Linac high-gradi	Linac high-gradient operation and system demonstrations:							
TTF/FLASH	Full 9 mA, 1 GeV, high-repetition rate operation							
STF & ILCTA-	Cavity-string test within one cryomodule (S1 and S1-global)	2010						
NML	Cryomodule-string test with one RF Unit with beam (S2)	2012						
Electron cloud m	nitigation studies:							
	Re-configuration (re-build) of CESR as low-emittance e-cloud test facility. First measurements of e-cloud build-up using instrumented sections in dipoles and drifts sections (large emittance).							
CESR-TA	Achieve lower emittance beams. Measurements of e-cloud build up in wiggler chambers.							
	Characterisation of e-cloud build-up and instability thresholds as a function of low vertical emittance (≤20 pm)							

GDE Conventional Facilities and Siting (CF/S) Workshop (Dubna June 2008)

- The RDR represents a consensus design, which reconciled inputs from our constituent accelerator designers / engineers
- We believe a more cost-effective design, based on the RDR, is possible and mandated by a need to 'optimize' the ILC design
 - sacrifices may be necessary Value Engineering

PM Assumptions:

- There exists a 'minimal design' that satisfies all scope requirements and facilitates cost comparisons for 'optional' features
 - Not a trivial concept due to design optimization and consolidation already in RDR
- The shallow machine is more cost-effective (XFEL, Dubna site...)
 - Effective reliability strategy for single tunnel layout NOT done for RDR due to time / resource limitations
- The process can be done within the 'consensus building' context established for RDR
 - Our community must buy-in and participate

Minimum Machine Definition

Physics scope (WWS document)

- 200-500 GeV centre-of-mass energy range
- 2x10³⁴ cm⁻²s⁻¹
- polarized electrons

Identify cost-driving requirements and criteria

- Push back on them to acceptable minimum
- CFS will be primary target
 - Underground volume and construction
 - Process cooling water

• Definition document due late 2008

 Led by Project Manager Nick Walker (DESY) and ILC Integration Scientist Ewan Paterson (SLAC)

CF / S Strategy

- RDR: Deep Rock, twin tunnel configuration
 - strong similarities \rightarrow each region developed the same design

• Value Engineering:

- understand the cost drivers; review and evaluate the technical criteria that define them
 - underground volume
 - tunnel dimensions; second tunnel
 - stability and etc

Goal:

- Devise practical, 'minimum', technical criteria
- Strategy (must be site-independent):
 - Develop contrasting machine configurations
 - for example: shallow site (Dubna); single tunnel (XFEL), etc
- Implement comparison and analysis process between these and the RDR baseline
- Define 'uniform' site specifications; recommend further development

Project Implementation Plan (PIP)

- The PIP will be developed in several stages during the TD Phases:
 - Review existing examples of PIPs and develop and define the elements of the ILC PIP (2009)
 - Begin to develop the models for globally distributed mass-production of the SCRF (and other where suitable) components as part of an 'in-kind' project implementation scenario (2010)
 - Develop cost models for the SCRF based on the above, which will provide the framework for the SCRF technical groups when estimating their costs during TD Phase 2 (2012)
 - Develop the other identified elements of the PIP (2012)
- The PIP will be published as part of the primary deliverables of the TD Phase in 2012.

Corganization and Review Process

		Technical Area													
	1.	Superconducting RF Technology	2.	Conventional Facilities & Siting and Global Systems	3.	Accelerator Systems									
	1.1	Cavity	2.1	Civil Engineering and Services	3.1	Electron Source									
al Area Ips	1.2	Cavity-Integration	2.2	Conventional Facilities Process Management	3.2	Positron Source									
ou ou	1.3	Cryomodules	2.3	Controls	3.3	Damping Ring									
G L	1.4	Cryogenics			3.4	Ring To Main Linac									
Technical A Groups	1.5	High Level RF			3.5	Beam Delivery Systems									
	1.6	Main Linac Integration			3.6	Simulations									

• Reviews by:

- Project Advisory Committee
 - J. E. Augustin, Chair
 - reports to ILCSC
 - October 19-20, 2008
- Accelerator Advisory Panel
 - Bill Willis, Chair
 - reports to Project Director, Barry Barish
 - Spring 2009; ongoing, 'embedded', interaction between Panel and TDP Managers

Global Resource base 2007-2010: SRF

			F	TE-Y	'ear	S		total M&S							
		Cavities	Cryomodule	HLRF	Cryogenics	ML Integ.	total FTE-Years	Cavities	Cryomodule	HLRF	Cryogenics	ML Integ.	total M&S		
Americas	Canada	18					18	1050					1050	k\$	
	USA	73	24	68	5	14	183	9169	3960	5909	134	362	19535	k\$	
	China	12	8	8	4	1	33	1371	1371	1371	686	137	4936	k\$	
Asia	India	24	12				36	1560	900				2460	k\$	
Азіа	Japan	45	6	11	4	5	72	19867	4125	4036	1607	9992	39627	K\$	
	Korea	13		5			18	1619		264			1883	K\$	
	EU (CERN)				1	4	5					190	190	k\$	
	France	94					94	14785					14785	k\$	
Europo	Germany	51	10	7	7	9	83	2506	531			35	3071	k\$	
	Italy	38	8		1	1	48	1738	235				1973	k\$	
	Russia	2	20				22	20					20	k\$	
	Spain		3				3		13				13	k\$	
· · ·		370	90	99	21	34	615	53685	11136	11581	2427	10715	89542		

• Notes:

- XFEL project specifically excluded where possible
 - → Estimate 65% of France FTE / 80% France M&S is XFEL project-related
 - Other EU does not include XFEL
 - DESY XFEL R&D ~ 155 FTE 2007 -2009
- EU funding includes: CERN, European Commission Research Framework Programme 7 / 6 (5 contracts), National funding agencies (IN2P3, STFC, INFN, BMBF,...)
 - ILC project-specific and Generic R&D
- Japanese effort is labeled 'generic'; but largely supports ILC
 - Japanese FTE includes scientific and top-level engineering staff only
- Currency conversion based on 01.01.2008

Global Resource base 2007-2010: Accelerator Systems

				FTE	E-Ye	ears	5		total M&S									
		Elec. Source	Posi. Source	Damping Rings	RTML	Beam Delivery	Simulations	total FTE-years	Elec. Source	Posi. Source	Damping Rings	RTML	Beam Delivery	Simulations	total M&S			
Americas	Canada			5				5			20				20	k\$		
	USA	11	8	28	1	48	16	113	617	144	7174	3	3847	190	11975	k\$		
Asia	China			12	4	20	2	38		69	686	14	27	14	809	k\$		
	Japan	2	7	16		23	4	52			6447		3348		9795	k\$		
	Korea			2	2	4	3	12			28	28	217	28	301	k\$		
Europe	EU (CERN)			2		1	4	7			10		3	13	26	k\$		
	France		11		5	12		27		573			9		582	k\$		
	Germany		22	3		4	4	33		47	10		53	20	129	k\$		
	Italy			17				17			441				441	k\$		
	Spain					2		2								k\$		
	Sweden				2	2		3								k\$		
	UK		10	11		85		106		70	124		3069		3263	k\$		
		13	57	97	14	201	33	415	617	903	14939	44	10574	264	27342			

• Notes:

- Test facilities account for ~80%
 - ATF2 effort regionally balanced
- UK effort greatly reduced
 - 2009 and 2010 ~ 20% of total
 - Non ILC-specific 09 and 10 R&D (instrumentation etc) not included
- Positron Source includes R&D on Compton 'alternate'
- Currency conversion based on 01.01.2008

The GDE TDP Program:

- Has a broad inter-regional basis
- ART contribution is consistent and significant
 - But not dominant, overall
- Is based on a multi-lateral collaboration \rightarrow
 - Not centralized
- Relies on 'in-kind' R & D contributions from partner labs and regions
 - ILC project-specific
 - Other project-specific
 - Generic R & D
- Has adequate resources for TDP1
- Will require increased project-specific design resources for TDP2