SiD Tracker Readout: Context for Cable Design

Tim Nelson - SLAC

SiD Tracker Pigtail Cable Review

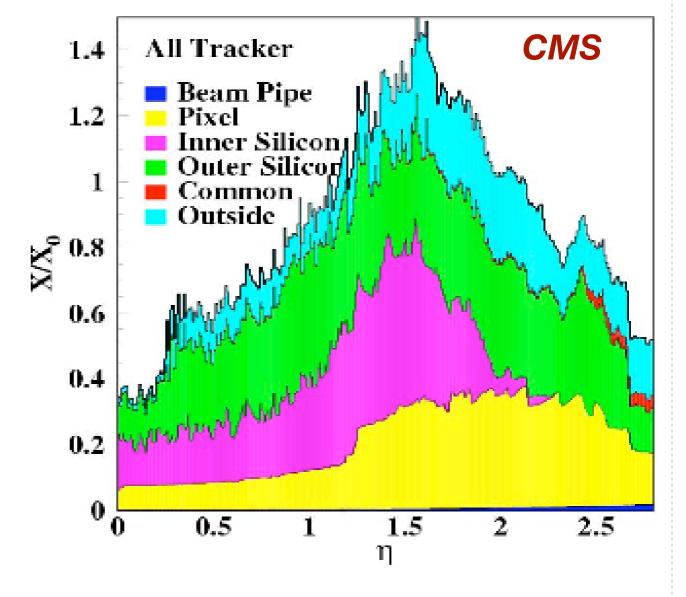
May 29, 2008

 \oplus

Outline

SiD tracker hardware R&D

The KPiX readout concept


SiD barrel tracker sensor prototypes

Design requirements for readout cable

Key Hardware R&D Driver

Large silicon trackers (ATLAS, CMS) have been too massive for the physics mission of the ILC

This issue drives nearly all hardware R&D for solid state tracking at the ILC

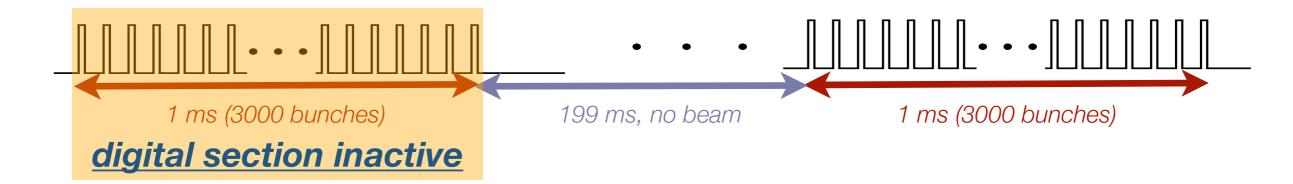
Reducing Material

Cooling: eliminate

- Readout / Power: reduce
 - 🔒 Chips
 - 🔒 Hybrids
 - 🔒 Cables
- Support: minimize

Avoid unnecessary redundancy

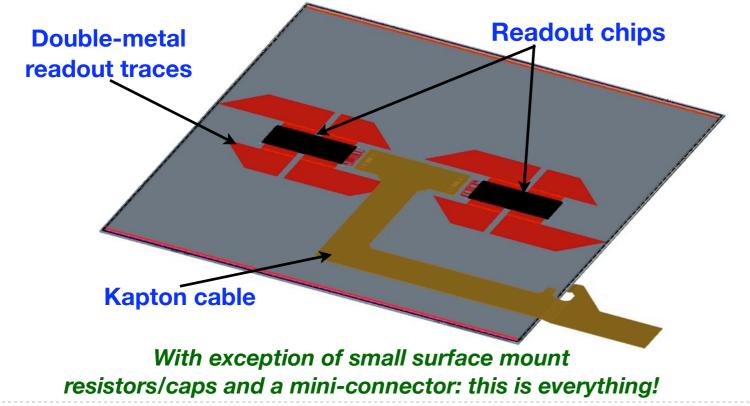
ATLAS SCT



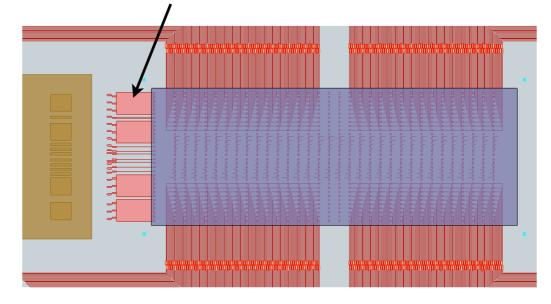
The Hows and Whys of ILC Readout Electronics

- Pulsed operation of front end results in ~100X reduction in dissipated power
 - Minimizes services: cooling, cable plant
 - Many ILC detector ideas don't work without pulsed power
 - dense Si-W calorimetry
 - Iow-mass tracking
 - Pulsed power is a common element of many ILC readout efforts
 - B The SiD realization of this an ASIC called **KPiX**: achieves 20μ W/channel avg.
 - ~600W total for 30 million channels: tracker can be gas cooled

What is Special About KPiX?


KPiX stores signals acquired during a bunch train in 4 analog buffers

- hits are time-stamped to individual bunch crossings, reducing background susceptibility
- digitization and readout occur between bunch trains, minimizing potential for pickup of digital activity on analog front end (only synchronous LVDS clock): allows chip to be more closely coupled to detector electrodes
- Along with an enormous repertoire of built-in capabilities and flexibility of configuration, KPiX may be bump-bonded directly to sensors


SiD Tracker Module Design

An aggressive approach to reduction of readout material:

- bump-bonded ASIC with double-metal readout: *no hybrid circuit board!*
- Short, single-sensor modules ensure low capacitance \Rightarrow high signal/noise
 - negligible single-hit inefficiency reduces reliance upon redundancy in layout
 - excellent single-hit resolution provides best possible momentum resolution
 - per-sensor occupancy from physics+noise is small, simplifying pattern recognition

Power and readout must also be routed on double-metal!

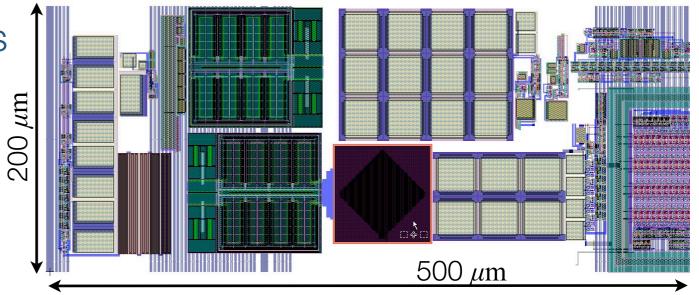
KPiX SLAC, U. Oregon

- SMC 0.25μm CMOS
- 32×32 array = 1024 channels
- working with 2×32 prototypes

First versions targeted only at ECal

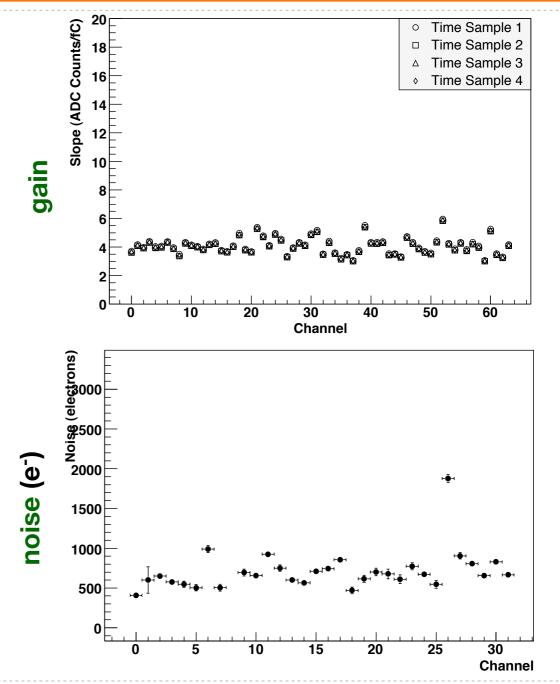
- dynamic range switching for large charge depositions in ECal (0.05-2000 MIP range)
- bias current servo for DC coupled sensors
- lin calibration circuitry

Other applications demand additions


- Nearest neighbor logic, high-gain feedback capacitor for tracker
- Polarity selection (GEM readout)
- External trigger for test beam

All features tested and working

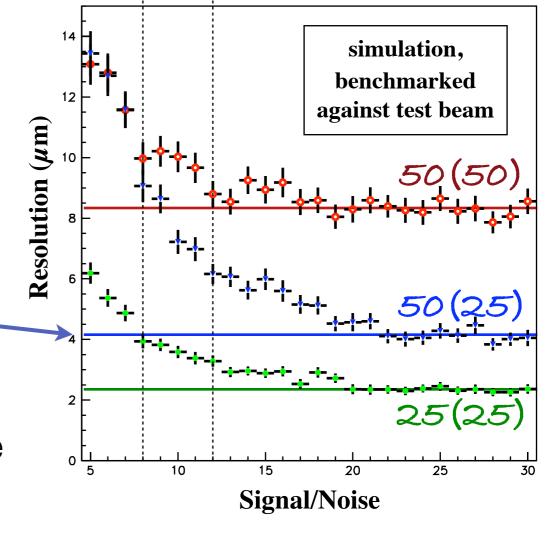
	-	 141		-	1		61	•	-	-	1	-	-			-			-	-	ene h		-	n i	1	-		-			-	1		ere h	h	1	-			Ţ			ł
ł						-	1		-					-					1	ſ	Ŧ							-	-									ſ	T	1			No. of Lot
	日月二	-								11	H			1			all n																										
					-					-		I	-		I	-		I	1		I	1		I	1		I	1		1	I	1		I	1	1		I	I	1	1	I	
			M.			M. I	ā.			1						-					2) 11			100 A			플라 10				음! 10		비			Ma Ma							1


KPiX64

a single cell of KPiX

KPiX Performance

- Each successive generation has added capabilities, improved greatly in performance.
- KPiX7 is current generation
 - Good gain and threshold uniformity
 - Expected noise achieved in both trigger branch <u>and</u> from ADC: ENC = 300+30*C e⁻
 - No major issues remain!

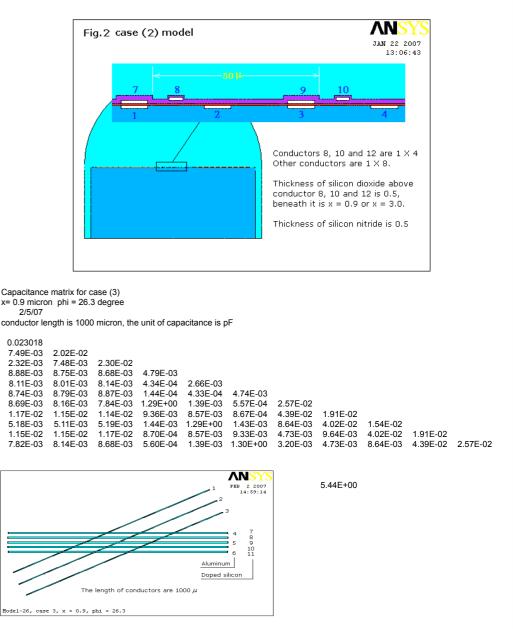


Sensors SLAC, FNAL

Need ~30,000 sensors: keep it simple, cheap

- 👶 Single-sided p+-in-n silicon
- 👃 Largest square sensor from 6" wafer
- 🔒 Ensure high S/N
 - 👶 Short strips with optimized double-metal
- Achieve best resolution for channel count
 - 25 micron sense pitch, 50 micron readout: results in excellent resolution
- Minimize potential problems with double-metal power/readout scheme
 - Lowest possible power/ground impedance
 - Minimize coupling between LVDS clock traces and underlying strips

readout(sense) pitch (µm)



Double-metal Optimization

Signal traces:

- HPK double-metal traces down to $2\mu m$ width
- balance capacitance against series resistance, minimize variations among channels
- Layout began with previously-learned lessons learned from others, proceeded through a great deal of ANSYS modeling
- 8(9)μm implant(sense strip) width,
 4μm double-metal readout width:
 - ♣ C=14-18 pF for 95% channels, 20 pF max
 - \clubsuit R < 350 Ω for all channels
 - S/N = 20-25 with KPiX

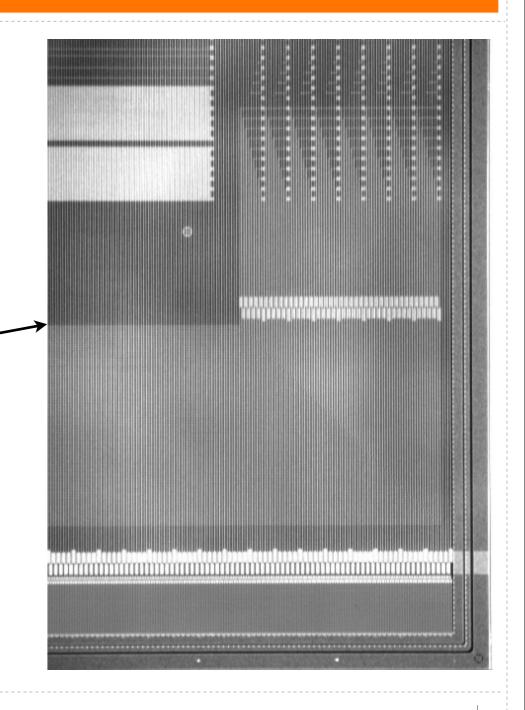
The model for case 2 is plotted in Fig.2. There are 12 conductors. The capacitance matrices are listed on next page.

 \oplus

Double-metal Optimization

Power/readout traces:

- Want shortest, widest traces for power, ground: 0.08 Ω/pair (round-trip spec is 1Ω max.)
- integration over odd number of clock edges will introduce ~3500 e- pedestal shift on channels underneath bond pads from capacitive coupling
 - ➡ one clock per BX?
 - clock rate faster than shaper response?
- somewhat smaller is shift due to voltage fluctuations on power and ground traces if assumed to be completely unbalanced

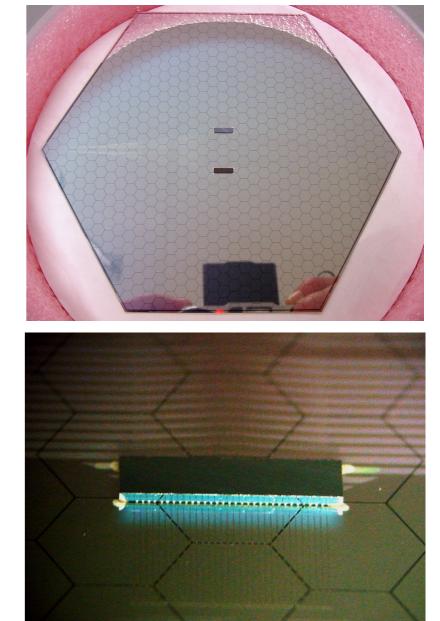

Simulations cannot be trusted at this level: we need to try it!

LVDS clo 4 micro 60 micro	ock pair{								
		DVDD							
)100100 00000)00000 00000	100001 00000	100010 00000	10000 00000	1000000 000000000000000000000000000000

HPK Prototype Sensors

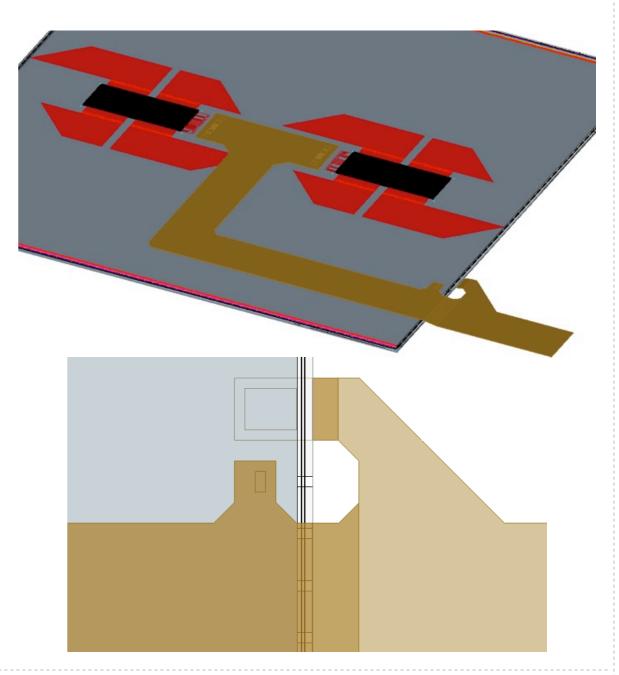
Received sensors from HPK on March 30.

- 20 full-sized tracking sensors for module prototypes with full-sized KPiX
- 40 smaller sensors for testing double-metal readout with smaller KPiX variants
- Quality excellent: bad channels <1/10000 (!!)</p>
- Appears that there were no yield problems
- Will be tested in the coming weeks



KPiX Bump Bonding UC Davis

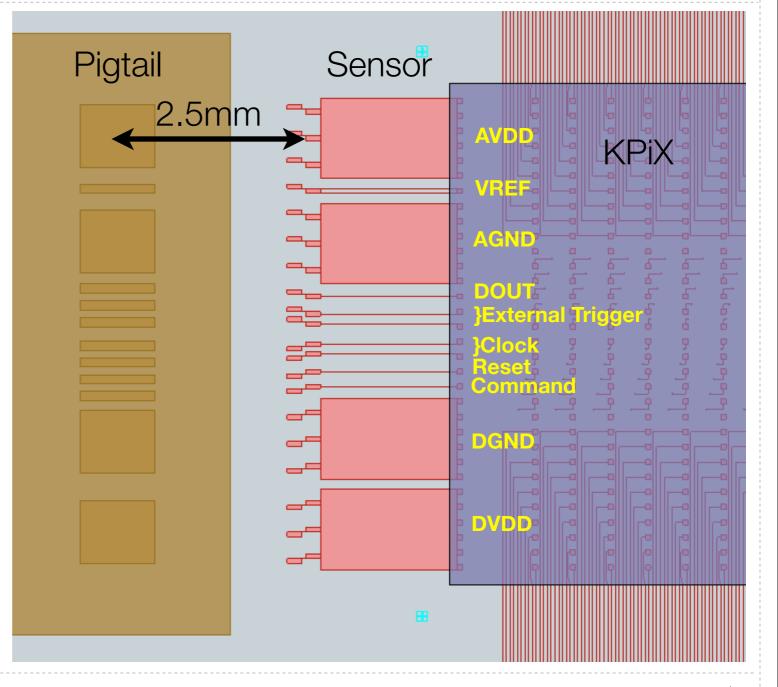
Bump-bonding is a critical process for our designs


- At these pitches, gold-stud bumping becomes feasible, especially attractive for small-run R&D
- First attempts by Palomar Technologies on KPiX-5 and ECal prototype sensors somewhat successful
- Only 96% yield on first two test chips
- Corrosion problem between epoxy used for making final bond and Al pads: at worst we will have to add Ti-W as one would for indium bumping

Encouraging progress for an unfamiliar technique: anticipate using this process for prototype modules

Pigtail Cable UNM

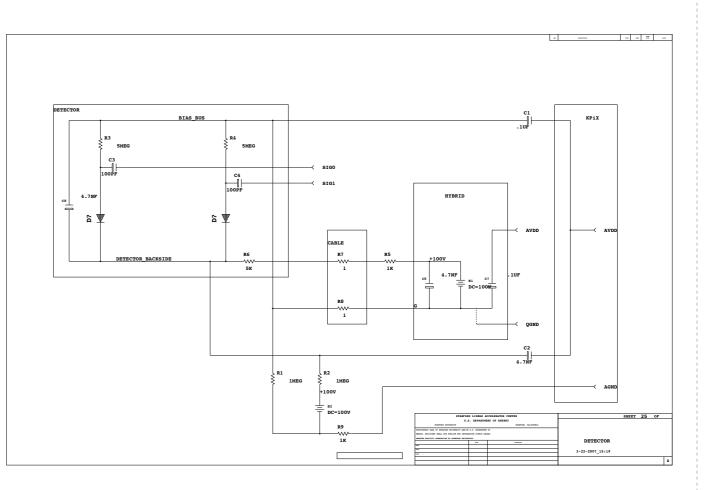
- Pigtail glues to sensor, wirebonds to double-metal, bias tab at edge
- Connects to straight extension cable running to ends of cylinders (up to 1.7m)
- ¼-ounce copper on 50µm Kapton
 - 2 power+ground pairs
 - 8 narrow control/readout lines
 - HV pair for sensor bias
 - cable width 8mm



 \oplus

Pigtail Details

Large pads for wirebonding


- Important to consider details that minimize material
 - 🔒 Meshed ground plane
 - 🔒 Thinner Kapton?
- Important to design as robustly as possible
 - 👶 Connectors
 - Radiused inside corners?

 \ominus

Missing Details

- Critical to define surface mount components required for bypassing, termination
- Dieter Freytag drew up a "maximal" scheme: not clear that all of these components will be required
- At the prototyping stage, we want to have all options available for testing different configurations
- Provisions for these components are a key subject to be reviewed: input from Dieter is necessary

Summary

- The pigtail is a rather simple item mechanically, only a few questions
 Thickness
 - 🔒 Nature of ground plane
 - Robustness of connector and sharp inside corners
- The key details are electrical
 - How are HVGND/AGND/DGND connected?
 - How are signals terminated?
 - How does bypassing work?
- These are prototypes intended for R&D on this readout scheme: we would prefer as much flexibility in configuration as we can have without creating fundamental problems.