Requirements for Jet Energy Resolution

Tim Barklow SLAC June 2, 2008 Simple study of $\Delta M_{W,Z}$ versus $E_{W,Z}$ & ΔE_{jet} using FASTMC $e^-\gamma \rightarrow v_e W^- \rightarrow v_e \overline{u} d$ $v_e H \rightarrow v_e Z \rightarrow v_e u \overline{u}$

No resolution loss from jet-finding, neutrinos, or particles outside fid. vol.

Use the following single particle calorimeter resolutions in FASTMC to mimick PFA jet energy resolution versus jet energy for jet energies $50 \text{ GeV} < \text{E}_{\text{jet}} < 250 \text{ GeV}$:

$$\frac{\Delta E_{\gamma}}{E_{\gamma}} = \frac{0.18}{\sqrt{E_{\gamma}}} \qquad \qquad \frac{\Delta E_{n,K_{L}^{0}}}{E_{n,K_{L}^{0}}} = 0.28$$

Light quark jets $ee \rightarrow qq$

The approximate expression for the two-jet mass M is

$$M \approx 2E_1 E_2 (1 - \cos \theta)$$
$$\frac{\Delta M}{M} \approx \frac{1}{2} \left[\frac{\Delta E_1}{E_1} \oplus \frac{\Delta E_2}{E_2} \right]$$

but the full expression is

$$M = m_1^2 + m_2^2 + 2E_1E_2(1 - \beta_1\beta_2\cos\theta) \quad , \quad \beta_j = \left(1 - \frac{m_j^2}{E_j^2}\right)^{\frac{1}{2}}$$

$$\frac{\Delta M}{M} \approx \frac{1}{2} \left[\frac{\Delta E_1}{E_1} \oplus \frac{\Delta E_2}{E_2} \oplus \frac{\theta \sin \theta}{1 - \cos \theta} \frac{\Delta \theta}{\theta} \oplus \frac{1 + r^{-1} \cos \theta}{1 - \cos \theta} \frac{m_1^2}{E_1 E_2} \frac{\Delta m_1}{m_1} \oplus \frac{1 + r \cos \theta}{1 - \cos \theta} \frac{m_2^2}{E_1 E_2} \frac{\Delta m_2}{m_2} \right]$$
$$r = \frac{E_1}{E_2}$$

How important are the
$$\frac{\Delta\theta}{\theta}$$
, $\frac{\Delta m_1}{m_1}$, $\frac{\Delta m_2}{m_2}$ terms?

Back to back W Z \rightarrow 4 jets yes gluon radiation

Error on $BR(H \rightarrow WW^*)$ from measurement of $e^+e^- \rightarrow ZH \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}lv$ at $\sqrt{s} = 360$ GeV, L=500 fb⁻¹ J.-C. Brient, LC-PHSM-2004-001

12

E.g., the simple squark -> q χ two-body decay leads to the familiar `table' structure. The rate depends on the specifics of the mass spectrum and the beam polarization.

The end points tell us the squark mass

Feng & Finnell '93

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 qqqq$

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 qqqq$

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 qqqq$

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 qqqq$

 $e^+e^- \rightarrow ZHH \rightarrow q\overline{q}b\overline{b}b\overline{b}$

ZHH events

LCFI btag NN much improved performance but 5s/ev

charm mis-id efficiency versus b-tag efficiency

SiD ZHH Analysis

