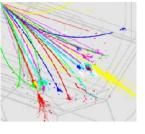
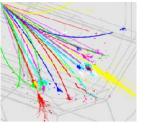


Detector Optimization 02.06.2008 M. Stanitzki

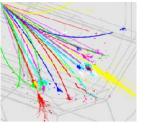


What are we trying to do ...

- Use PFA algorithms to optimize general detector parameter for jet energy resolution
- The PFA algorithm of choice
 - Should work with all kind of detectors
 - Should be optimal for each specific design
 - Support all kind of readout technologies
 - Should work with all frameworks
 - be a Eierlegende Wollmilchsau
- A algorithm tailored to a specific detector will always be superior !

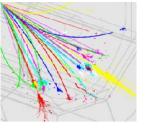


Where are we right now


- Want to use current PFAs to
 - make an informed choice
 - Acknowledge the caveats
 - back up design choices so far
 - Freeze a detector design to the best of our knowledge
- We always know more next week(month, year)

In this talk ...

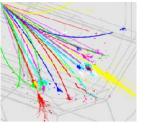
- Summarize the global parameters studied
- Make some suggestions on parameter choices
 - Building a detector with the best energy resolution possible
 - keep in mind some mechanical constraints
 - Won't touch impacts on tracker/vertex design
- I'll ignore
 - Cost (Marty will cover that)
 - What resolution is good enough (Should we limit ourselves to that ...)
- I'll quote a lot of numbers from
 - RAL talk
 - talk at last Advisory meeting


Short Summary

- PFA of choice is PandoraPFA
- Using an SID-lookalike , the SIDish
- Results for 45 GeV & 100 GeV jets
- Numbers quoted are (if not mentioned otherwise)
 - $\cos(\theta_{Thrust}) < 0.7$: Barrel Events

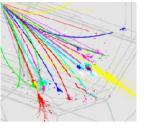
- using
$$\alpha$$
 in % $\frac{\sigma_E}{E} = \frac{\alpha}{\sqrt{E}}$

- There are a set of caveats
 - Calibrate Response for different detector variations
 - not optimal
 - Using track cheaters



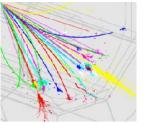
Global Parameters

- B Field (B)
- Tracker radius (r)
- Tracker length (z)
- HCAL depth (λ)
- HCAL segmentation (n_{Layers})
- Some other calorimetry questions



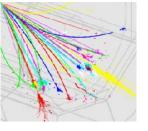
B field

- Choice for a compact detector with 5 T field
 - good for tracking, vertexing
 - good for beam background suppressions
- Impact on PFA performance
 - Small at the Z pole (<1 %)
 - 4 % gain going from 4 to 5 T at 200 GeV
 - tracker radius and B field strongly connected
 - not always gaining by raising B field -> loopers
 - there are sweet spots for B and r



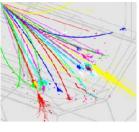
Impact of B field choice

- Choice of B field of 5 T severely constrains parameter phase space
- Maximal $r_{Tracker} \sim 1.5 \text{ m}$ (limited by maximum coil size)
- from current SiD design have additional 25 cm available
 - to vary tracker radius
 - vary calorimeter depth and segmentation
 - that is not a lot ... (λ_{Iron} =168 mm ..)



Tracker radius

- Radius has a certain impact on performance
- increasing $r_{Tracker}$ from 1.25 to 1.5 m
 - about 1% gain at 200 GeV
- Going to smaller r_{Tracker}
 - Not a good idea
 - 7 % worse at 200 GeV
- If we keep B fixed at 5 T
 - \sim 1.25 m is probably not a bad choice
 - could argue for moving to 1.5 m



Tracker length

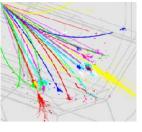
- New study (triggered by John)
- Two approaches
 - use existing data sets and look in the forward region defined as 0.9< cos ($\theta_{_{Thrust}})$ < 1.0
 - use specially generated samples with one u jet at exactly $cos(\theta)=0.92$
- Caveats
 - for first approach we already have a lot of samples but not a lot of stats in forward
 - for the second we are simulating things right now

First results from study I

Taking the standard samples and looking in the forward region... 0.9< cos (θ_{Thrust}) < 1.0

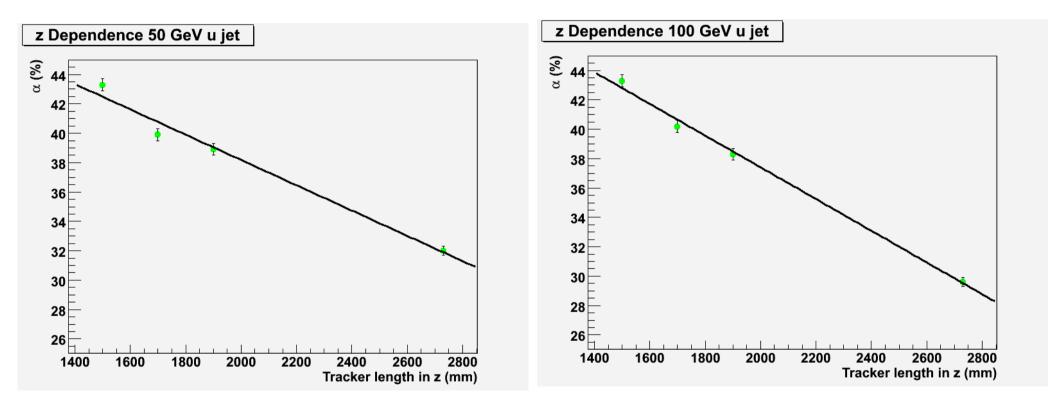
Detector Tea	В	Z	uds (9 [,]	1 GeV)	uds (200 GeV)	
Detector Tag			α%	Error	α%	Error
SIDish	5	1.7	70.4	1.8	105.0	4.0
SIDish_r125_z15	5	1.5	76.1	2.1	110.5	4.2
SIDish_r125_z19	5	1.9	67.8	1.7	92.4	3.5
SIDish_4T	4	1.7	71.8	1.8	106.2	4.0
SIDish_6T	6	1.7	69.5	1.7	99.9	3.8
LDC00Sc	4	2.7	49.5	1.3	66.6	2.5

This is way less statistics plus there are two jets and not one well defined u-quark !

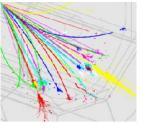

z dependence for study I

Large Error bars !

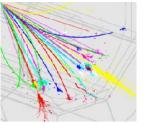
- α linear in Z
- small impact of B field
- Can't really say a lot on calorimetry impact



Tracker length study II

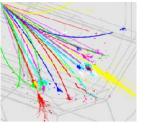

Detector Tea	u (50	GeV)	u (100	GeV)	u (250 GeV)		
Detector Tag	α%	Error	α%	Error	α%	Error	
SIDish	39.9	0.4	40.2	0.4	78.8	2.0	
LDC00Sc	32.0	0.3	29.6	0.3	71.5	4.1	
SIDish_r125_z15	43.4	0.4	44.2	0.5			
SIDish_r125_z19	38.9	0.4	38.3	0.4			

z dependence for study II



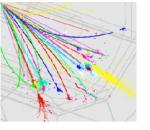
Tracker length conclusions

- If we care about forward performance
 - Need to make SiD longer
 - Study I indicates a lot longer (~ 1 m)
 - Study II also prefers longer detectors
- But fair to say right now ...
 - going from $z_{Tracker} = 1.7$ to 1.9/2.0 m is not crazy at all
 - How much maneuvering space is available
 - How will this effect other systems ?
- I'll be able to say more soon



HCAL depth

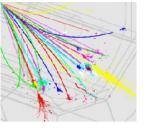
- Studies made by Mark Thomson favor a very deep HCAL
- We did two studies looking at segmentation and thickness
 - Keeping the total HCAL thickness constant
 - Keeping the λ_{Iron} constant
 - vary segmentation from 30 -50 layers

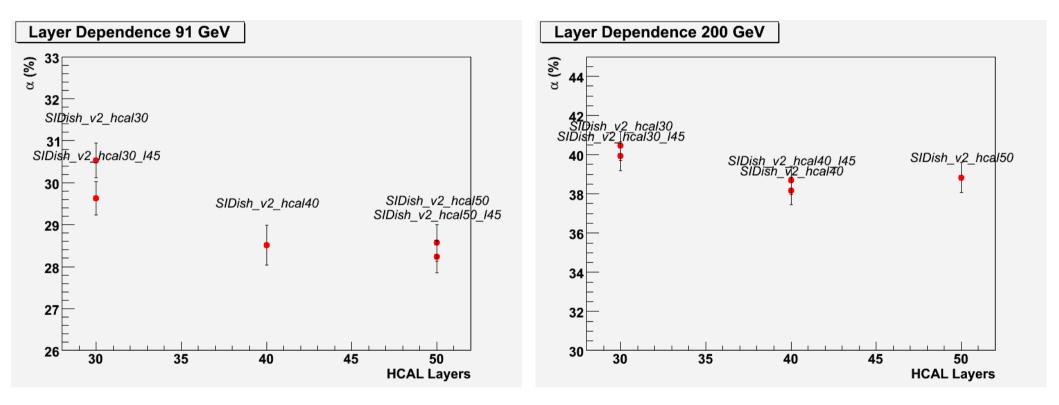

The setup

TAG	Layers	total thickness	Iron thickness	Absorber thickness	HCAL thickness	λ
SIDish_v2_hcal30	30	32.7	26.2	6.5	980	4.92
SIDish_v2_hcal40	40	24.5	18.0	6.5	980	4.61
SIDish_v2_hcal50	50	19.6	13.1	6.5	980	4.45
SIDish_v2_hcal30_l45	30	31.7	25.2	6.5	951	4.75
SIDish_v2_hcal40_l45	40	25.4	18.9	6.5	1016	4.83
SIDish_v2_hcal50_l45	50	21.6	15.1	6.5	1081	4.91

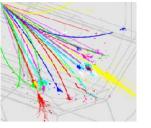
Some Comment

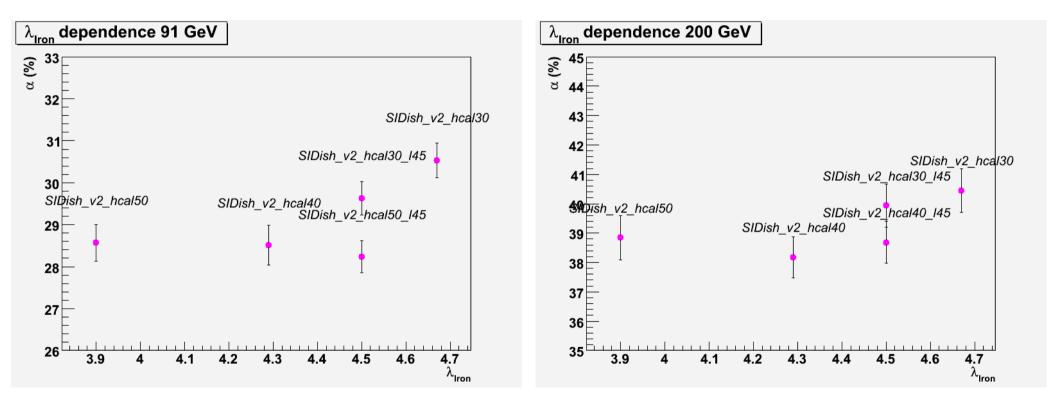
- different Mokka version compared to all other studies
- SIDish_v2_hcal40 is the "standard" SiDish geometry!
- λ done with $\lambda_{_{Iron}}{=}168$ mm and $~\lambda_{_{Scint}}{=}795$ mm

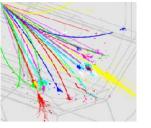


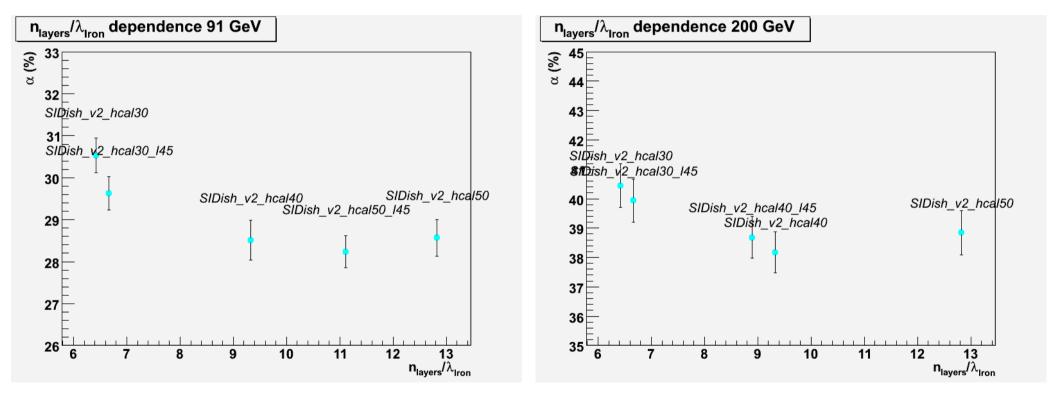

Results

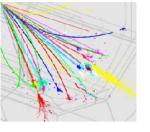
Detector Tag	Layers	uds (9	1 Gev)	uds (200 GeV)	
Detector Tag		α%	Error	α%	Error
SIDish_v2_hcal30	30	30.5	0.4	40.5	0.7
SIDish_v2_hcal40	40	28.5	0.5	38.2	0.7
SIDish_v2_hcal50	50	28.6	0.4	38.8	8.0
SIDish_v2_hcal30_l45	30	29.6	0.4	39.9	0.7
SIDish_v2_hcal40_l45	40			38.7	0.7
SIDish_v2_hcal50_l45	50	28.2	0.7		



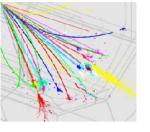

Number of layers





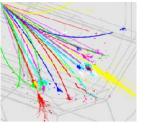


n_{Layers}/ **Iron**


Marcel Stanitzki

HCAL summary

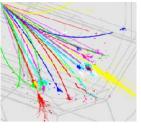
- From what I can say right now
 - depth and segmentation are closely correlated
 - not just more steel or more scintillator
 - More like $n_{_{Layers}}\!/\lambda_{_{Iron}}$ as quantity to optimize
 - $n_{Layers}/\lambda_{Iron} \sim 10$ a good rule of thumb ...
- Clearly need more points
 - But more HCAL is a good thing
- More results on Wednesday


ECAL segmentation

looked at different ECAL variants (Idea by Harry)

Detector Teg	Radiator		X _o	uds (91 Gev)		uds (200 GeV)	
Detector Tag	Thickness	Layers		α%	Error	α%	Error
SIDish	1.4/4.2 mm	20+10	20	27.9	0.4	35.4	0.7
SIDish_ecal40	1.4/4.2mm	30+10	24	27.1	0.5	33.9	0.6
SIDish_ecal_eq37	1.41 mm	37	15	28.1	0.4	37.6	0.6
SIDish_ecal25_50	2.5/5.0 mm	20+10	29	27.3	0.4	35.1	0.6

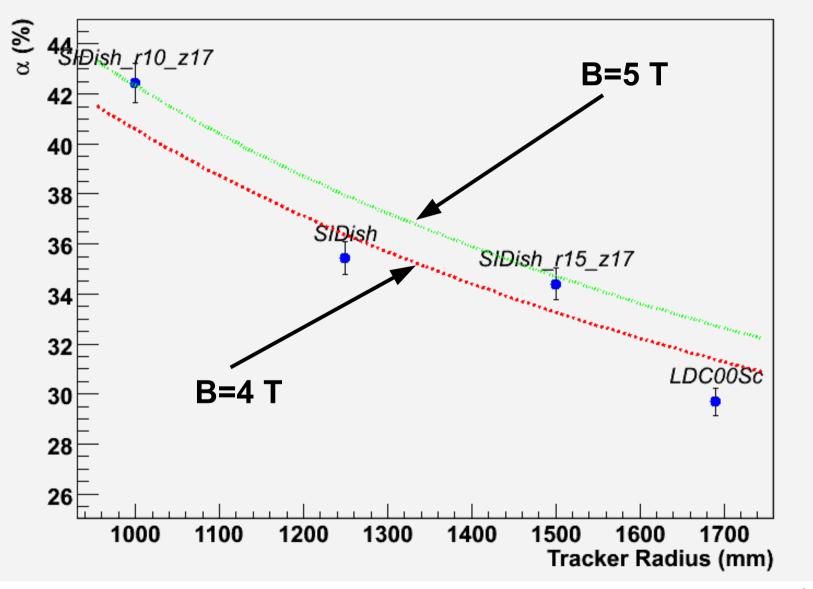
- Results indicate
 - optimizing the ECAL design give you some benefits
 - Finer segmentation is 'favored"
 - 1- 2% improvements possible
- But this doesn't change the ECAL radius by more than a



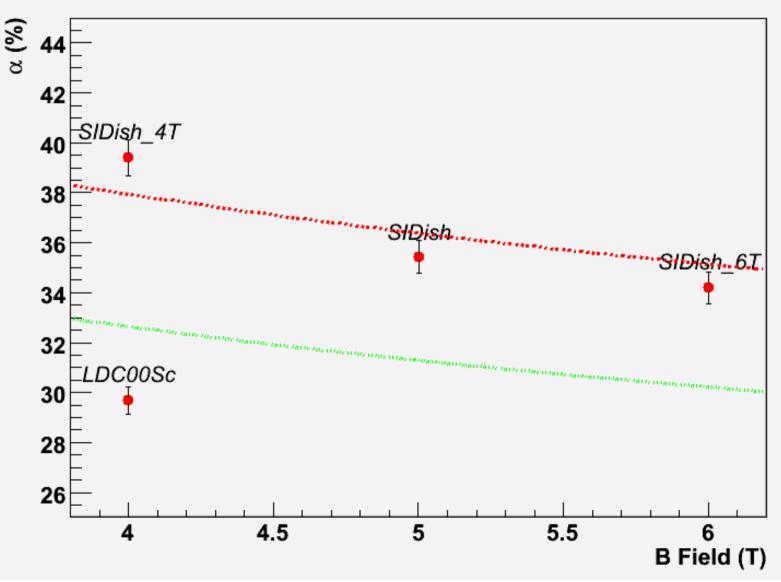
HCAL readout

- Run a version with the RPC's both for
 - LDC00
 - SIDish_RPC
- basically the same as LDC00Sc and SIDish
- Didn't change any of the cuts

	Detector	91 GeV		200 GeV		RPC
		α%	Error	α%	Error	
Scintillator	LDC00Sc	24.6	0.3	29.7	0.5	
	LDC00	27.0	0.5	31.7	0.6	
	SIDish	27.9	0.4	35.4	0.7	
	SIDish_rpc	31.7	0.5	38.9	0.7	

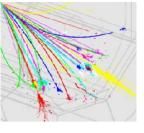


HCAL readout comments


- The RPC's have a worse performance so far
 - 2.5 -3 % worse for all detectors and energies studied
- Reasons
 - Algorithm not optimal for them ?
 - Some features in the simulation model ?
 - Do be understood (and help welcome)
- Does this effect the global parameters ?
 - yes in terms of readout gap size, etc
 - strong impact on engineering
 - but not a choice we need to make today ...

Parametrization (from Mark Thomson)

Radial Dependence 200 GeV



Cont'd

Marcel Stanitzki

What needs to be done

- Where would I use the available 25 cm in $r_{Tracker}$?
- Invest them in the HCAL thickness !
 - maybe also 5 cm for the ECAL
- Make the detector longer
 - z=2.0 m sounds like a reasonable pick
- Segmentation is important ...
 - Hints for a optimal number of segments per $\lambda_{_{\mathrm{Iron}}}$

Plans

- Will explore a few more points
 - HCAL with 5.0 $\lambda_{_{\rm Iron}}$
 - SiDish with 2.1 m in z
 - I am sure John and Harry will add to the list
- But need also input from
 - Engineering constraints
 - Cost
 - Tracking/Vertexing

