

SiD Outer Tracker Disks and Barrels

Bill Cooper Fermilab

Proposed Disk Geometry

- The tracking software group urged that sensor surfaces be normal to the beam line.
 - That simplifies equations.
 - Hit finding and track reconstruction may be faster.
 - Designs satisfying that preference are relatively straight-forward.
- Sensors of a disk could alternate among four z-locations to obtain r and phi overlap in an arrangement similar to that of the barrels.
 - Spiral geometry seems less desirable in the disks and would not satisfy the desire that sensors be normal to the beam line; hence the four z-locations.
- Alternatively, sensor z-locations could be stepped with r.
 - That is what is proposed.
 - Such an arrangement provides greater support structure stiffness in z for a given amount of support structure material.
 - To obtain stereo, back-to-back sensors are proposed.

- Flat disks, alternating cable paths
- Reminder: blue and magenta sensors are at different sets of azimuths
 - All sensors could be mounted from CF via spacers.
 - Layer 1 and 2 connectors could be mounted from CF via spacers or could be supported from extensions of the module structure.
 - Layer 3 and 4 connectors could be supported from extensions of the module structure.
 - Half of cables are dressed through the CF support structure.
 - Half the cables are not and will need support.
 - These cables also limit access for servicing sensor modules.
 CF Foam CF __

- Conical disks, cables away from IR
 - All sensors could be mounted from CF surface.
 - Additional locating features for modules could be provided.
 - All connectors could be mounted from extensions of the module structure, in which case, modules support the connectors.
 - All cables run across sensor surfaces and limit access during servicing.
 - Connectors are readily accessible, except to the extent cables cover them.
 - Connectors at the largest radius must be placed to avoid disk mounts (or vice versa).

Side elevation

Based upon 8/13/08 detector geometry from Marco Oriunno

• Note that the Lumi-Cal's protrude into the silicon region and that two different beam pipe geometries are shown.

Bill Cooper

Comparison with Older Geometry

• Number of sensor locations in z reduced by two in barrels 2, 3, 4, 5

 Z-clearances look tight if there is to be an FSI alignment system or a beam pipe positioning system.

Bill Cooper

Sensor Overlaps

- Consider sensors in a single plane "butted" against one another.
 - Assume sensor dimensions ~ 100 mm x 100mm.
 - Dead band for guard and bias connections ~ 1 mm.
 - Gap between sensors so that sensors can be powered individually ~ 1 mm
 - Then dead area ~ 600 mm² per sensor, or 6%.
 - This dead area would apply to all tracks, independent of the extent their helical paths deviate from a straight line.
- Now consider sensors which overlap in R & Phi.
 - If that is done properly, then effective dead area = 0 for tracks that are nearly straight.
 - However, for tracks in which the helical path deviates significantly from a straight line, z-separation between adjoining sensors introduces gaps in coverage.
 - As in the barrels and vertex detector, we need to choose how hermetic the tracker should be for low momentum tracks.

Sensor Overlaps

- Initial cone design
 - As a starting point, I've assumed minimum phi overlap should equal the z-separation between central planes of adjacent modules (3.5 mm).
 - I've taken minimum overlap in r to be 1 mm for straight tracks from the origin.
 - The result for hexagonal sensors is an overlap area of ~ 24%, i.e., sensor active area / cone area = 1.24.
- That suggests reconsidering butted sensors with an additional disk.
 - Provided disks were clocked in azimuth from one disk to the next, that could work.
 - To provide good trace-back towards the IP, the additional disk should be reasonably close to disk 1.
 - That should work with sensors glued into place, but is difficult to realize with a modular design or with anything but flat disks.
 - Since sensors represent only ~ $\frac{1}{2}$ the material budget, it looks like cones remain a better choice.

Parameters for R-overlaps

• Please note that blue modules are at one set of phi's, magenta modules at another.

Module-to-module gap

• Z-gap between modules 2 &3 depends primarily on the module height (dR_module), and to a lesser extent on incidence angle.

• <u>Si</u>D •

Outer Tracker Barrel: R-Z View

- Tracker review: Beijing 2007
- Typical A-layer to B-layer overlaps (all layers)
- Hermeticity for separated vertices versus material remains to be studied:

Outer Tracker Barrel: R-Phi View

What momentum cut-offs do we really want?

- With a pinwheel geometry, R-Phi coverage for one charge polarity is essentially hermetic.
- For the other polarity, a small fraction of low P_T tracks can pass between sensors.
- Studies will be needed to understand these small effects and the trade-offs between hermeticity and added material.

Disk Geometry in R-Phi

- Disk 4 with two types of sensors is shown.
 - Increasing the number of varieties would allow phi overlaps to be reduced.
- Relevant sensors in disks 1-3 have the same r-phi locations.

Sensors

- Two types of sensors are shown for 12° stereo: cut area in black, active area in green.
- The sensor to the right is a rather tight a fit on a 6" wafer.

Sensors

- Assuming traces run parallel to right long edges, the hexagonal shape ensures a shortest trace length of 20 mm.
 - If that were not necessary, phi overlaps could be reduced.
 - Other choices of method to obtain stereo generally double the number of sensor varieties (assuming sensors are not double-sided).

Disk-Barrel Overlap

• Obtaining adequate overlap leads to a larger disk radius than that of the associated barrel (a known "feature").

Disk Modules

- To be developed
- Minimal structure
 - Back-to-back sensors would be vacuum laminated.
 - Should remain flat enough
 - Artwork between sensors for backside connections
 - Artwork on outer sensor services for chip connections
 - Connector at the inner radius of each module
 - Cables run through openings in the CF-Rohacell-CF disk structure and are dressed along the CF surface which faces the interaction point.
 - Pins locate each module transversely and guide it into a zif connector.

Possible Connectors

KYOCERA ELCO Products Product Type FPC/FFC Connectors								Page 1 of 3	
🛂 KYOCERa	KYO	CERA ELO	CO		Gl	obal	THE NEW VAL	ue Frontier.	
Home News Products	About								
				Parts	No./Produ	ct Type Sea	arch	Series Search	
	Products	> Product	Type > FPC	/FFC Connectors				→Japanese	
Products	FDC		Cor	nactore					
Product Type	TFC			mectors				\sim \sim	
FPC/FFC Connectors	pitch(mr	m): 0.2	0.3 0.4 0	0.5 0.8 1.0 1.25 See the	cable connection	on diagram 🕨		C Product Search	
0.2mm pitch	Click a	series No	the prov	duct specifications can h	e seen. Cli	ck a catalor			
0.3mm pitch	drawing	, the pro	duct draw	ing and the product drav	ving and th	e ordering			
0.4mm pitch	code ca	in be see	n.				Environ Corresp	mental	
0.5mm pitch							Concop	ondenoe	
0.8mm pitch	0 2 to 0	5mm							
1.0mm pitch	0.2 00 0								
1.25mm pitch	nitch		Profile	Cable connection	Contact	PC.Board	Rated Current	Catalog	
Board to Board Connectors	mm	Series	Height (mm)	See the connection diagram	location	mounting method	(Per one contact)	Drawing	
Memory Card Connectors	0.2	6246	1.85	ZIF/Right Angle	Dual faced	SMT	0.2A	(208KB)PDF	
Interface Connectors	0.3	6293	0.85	ZIF/Right Angle	Dual	SMT	0.2A	(203KB) PDF	
Wire to Wire/Board		6840	0.9	ZIF/Right Angle	Bottom	SMT	0.2A	(153KB) PDF	
Connectors		6295	0.9	ZIF/Right Angle	Bottom	SMT	0.2A	(139KB)PDF	
Card Edge Connectors		6296	1.0	ZIF/Right Angle	Bottom	SMT	0.2A	(143KB) PDF	
Back Plane Connectors		6283	1.1	ZIF/Right Angle	Тор	SMT	0.2A	(119KB) PDF	
Automotive Connectors		6285	1.1	ZIF/Right Angle	Bottom	SMT	0.2A	(171KB) <mark>PDF</mark>	
Shunt Connectors		6281	1.25	ZIF/Right Angle	Bottom	SMT	0.2A	(150KB)[PDF]	

Si D

Possible Connectors

A modern version of Hirose connectors.

Improved latching mechanism.

These connectors appear to be designed for 0.2 mm thick cables (including a cable stiffener).

Bill Cooper

Boulder Meeting – September 2008