

ttbar - Analysis

Erik Devetak
Oxford University 18/09/2008

In the last 4 months...

- Updated kinematic fitter constraints. (make better use of W mass and b tagging)
- Combined vertex Charge and Jet Charge in a single parameter (reconstructed quark charge)
- Plotted asymmetries of the \mathbf{b} and bbar quarks in the center of mass frame (agreement with standard model)
- First calculations of acceptances (proper implementation still needed)
- Moved from fast MC to PFA (first test of PFA at analysis level - looks very good!)
- Implemented top mass calculation Via template Fitting (not in this talk but first results to be expected very soon)

Defining a hadronic top (cut list)

- Missing Energy < 50GeV
- $\log \left(\right.$ Ycut $\left._{\text {min }}\right)$ (forced 6 jets events) >-8
- Sum of b tag of all jets >1.5, b-tag highest >0.7, second highest >0.5
- 2 Ws and $65 \mathrm{Gev}<$ Mass Ws $<95 \mathrm{GeV}$
- Also cuts on:
- number of particles
- difference between mass of tops
- difference between mass of Ws

Cut for quality of reconstruction and on leptonic events. (need lepton ID, then relax cut)

Kinematic fitting

NOW

- Do Kinematic fitting with 4 W jets +2 b jets (lower combinatorics)
- Add W mass as a constrain to the fitter.
- Relax Cuts

IMPROVEMENTS

BEFORE

> Do Kinematic fitting with 6 jets + cuts (W mass, b-tag, ...)

- Sharper Peak ($\sigma=2.7 \mathrm{GeV}$)
- Efficiency improved! (now keep $\approx 1 / 3$ of events)
- Purity $\mathbf{> 9 5 \%}$ (remainder from leptonic channels, no other BG)

Quark Charge

-Two charge reconstruction algorithms implemented:
-Momentum weighted secondary vertex charge
-Momentum weighted Jet charge
-Ratio of PDFs used to combine the two variables according to significance of variable. Can algorithms in the future.

b-bbar Asymmetries (in CoM frame)

- Mis-tag the b jet in 2\% of events
- Wrongly reconstruct charge in 19% of events
- Asymmetry for the bbar quark is $\mathbf{0 . 3 3 + / - 0 . 0 7}$
- Asymmetry for the b quark is $0.14+/-0.09$
- Combining the results: 0.26
+/- 0.06 (consistent with 0.28)
- Better sensitivity from: improved algorithm, statistics, polarized beam
- Need to include systematic errors (acceptance)

Moving: FastMC \rightarrow PFA

- Relatively easy, works well!
N.B.: Weighting of events not correct, performance degraded, used for comparison between PFA and fastMC
- Results only slightly degraded (as expected resolution slightly worse)
- Needs still some more testing

___ fastMC
- PFA

b-tagging in PFA...

- Good, better than fastMC?
- Is it real or from V0s?

- Known issues with V0s.
- Looking at running V0 finder to improve this.

The way forward

- Move on SiD02 and test (+ proper weights implemented)
- Deal with V0s
- Get first results from template mass fitting
- Introduce background and test
- Implement acceptances into the asymmetry calculation
- Get electron + muon ID and use it in the cuts.

