
SiD Tracking Plans What's Next?

Bill Cooper Marcel Demarteau Ron Lipton Rich Partridge

For the SiD Tracking Group

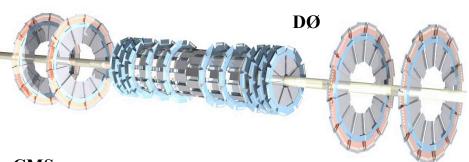
SiD Workshop Boulder, September 17-19, 2008

SiD Premise and Task

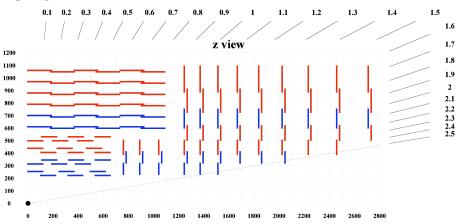
- One of the main areas where SiD differentiates itself from other concepts is in the tracker-vertex design
 - All silicon vertex and tracking detector
 - Small number of layers for pattern recognition
 - Barrel disk configuration for vertex and tracker (nested)
 - Small vertex inner radius because of high B-field
 - Air-cooled system with power-pulsing
 - ...
- By the same token ...
- One of the main areas where SiD receives skepticism compared to other concepts is in the tracker-vertex design
 - Hybrid-less readout feasible?
 - Adequate number of hits for pattern recognition?
 - Can the estimated material budget be maintained?
 - Occupancies acceptable?
 - Design allows for air-cooling?
 - Cable routing, powering and services?

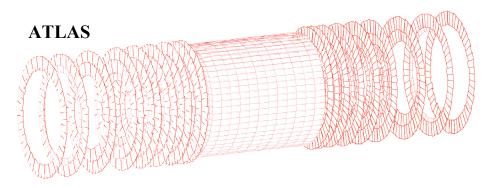
- ...

Purpose of the LOI



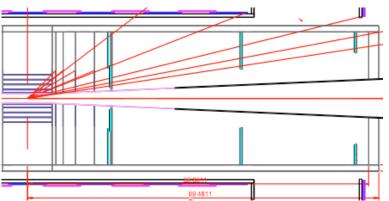
- One of the main purposes of the LOI is exactly to address the perceived weaknesses of the design and, if not sufficient data is available yet, outline an R&D program
- Given the page limitation of the LOI, we have decided that we will attempt to provide a separate, internally consistent, complete write-up of the vertex and tracking system of the SiD detector
 - Our aim is a NIM paper or a 'Linear Collider' note and/or SLAC/Fermilab technical memo
 - This paper will serve as reference document for the LOI
- We hope that this will receive full support; many people have invested a substantial amount of work and especially our younger colleagues deserve the recognition for their work
 - If there is no appreciation, there is no motivation.
- Moreover, there is added value to this work


Design of Tracking Systems



- Forward region is critically important to the ILC
 - Angular distribution: $(1+\cos^2\theta)$
- What is the best strategy for forward tracking? Is there a unique solution ?
 - How many measurements ?
 - Barrels interspersed with disks ?
 - Detector tiling: large or small angle stereo ?
 - Short strips, pixels ?
 - Ghosting, track finding efficiency
 - How to minimize mass ?

CMS



Vertex Design

- SiD Vertex Concept
 - High magnetic field allows for small inner radius for the inner layer
 - Barrel and disk system
 - Provides good forward tracking
 - Always at least one barrel hit/track
 - Unique to SiD
 - Integrated mechanical design with tracker
- Overall geometry is well-specified. For LOI we need to define:
 - Pixel size
 - Time resolution/layer
 - Candidate technology (ies)
 - Power scheme
 - Readout scheme

Associated mass

Sensor Technology

- A delicate issue it is early for a real choice vertex groups focused on a technology cannot be expected to explore implications of other technologies in detail.
 - My original thought was mixed technologies Shot down
 - Discussion during breakout did not converge on a technology choice.
 Sentiment is to finesse this in the LOI include table of choices
 - Chris just sent e-mail saying ILD is making a similar non-choice.
- Try to make consistent choices for modeling power, interconnect and support
- Specify single bunch resolution on inner layers
 - List candidate technologies
- Describe all-silicon support based on a room temperature detector system
 - Wafer-scale sensors (not reticles) preferred
 - Ladders based on ~75 micron thick silicon planes
- We hope to include a study of B,C efficiency and purity vs integration time
- Pixel sizes (based on A. Raspereza DEPFET result)
 - Barrel 25 x 25 micron
 - Disks 20 x 40 micron
- Pixel size optimization would be different in a MAPS or CCD technology

Pixel Study (A. Raspereza)

Spatial Point Resolution (r) in Endcap vs. Pad Height

🗕 δ(r) 25μm²

 $\delta(\mathbf{r}) 30 \mu m^2$

Point resolution (Endcap)

Resolution, µm

16

14

12

10

0

5

10

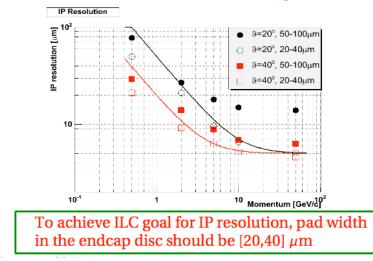
• Barrel pixels 25 x 25 micron

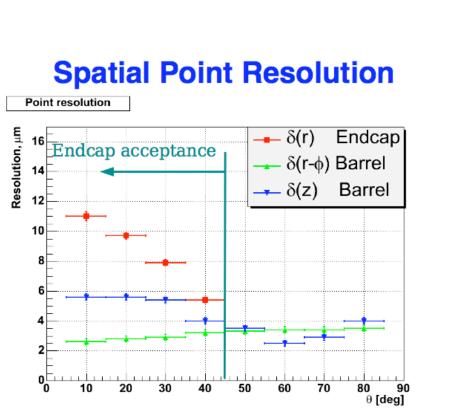
• Vary disk pixel dimensions to determine resolution requirements for forward disks

20

15

25


30


35

40

45

50

SiD LOI: Vertexing and Tracking

• The description of vertex-tracker system divides almost naturally into three areas

Vertex Detector

- Mechanical Design
 - Low mass support
 - Support from beam tube
 - Carbon fiber support tube
 - Power and Cooling
- Technical Design
 - Choices for technology
 - Cables, power and servicing
 - Alignment and push-pull

- Simulation and Performance

- Full geometry description
- Hit generation and digitization
- Pattern recognition

Tracker

- Mechanical Design
 - Carbon fiber support structures
 - Low mass module design
 - Power and Cooling

- Technical Design

- Double-metal sensors with hybridless kPiX readout
- Pigtail readout cable
- LSTFE Long Shaping Time Front-End chip
- Charge Division Readout sensors
- Frequency Scanned Interferometry for Alignment

- Simulation and Performance

- Full planar geometry description and virtual segmentation
- Hit generation and digitization
- Pattern recognition and track fitting

List of Figures for LOI

- 1. Elevation view of sub-detector; all silicon for vertex
- 2. R-phi view of sub-detector, barrels, disks, forward disks
- 3. Detail on vertex detector support from beam pipe and servicing
- 4. Detail on barrel/disk support for tracker
- 5. Detail on module design
- 6. Number of charged particles/cm² as function of radius for various z locations including beam backgrounds; occupancy as function of radius for barrels
- 7. Material budget as function of cos(theta)
- 8. Double-metal sensor layout + a characteristic (CV-curve?)
- 9. Track reconstruction efficiency as function of integrated # bunch crossings
- **10.** Impact parameter resolution as function of p_T and tan(lambda)
- **11.** Track reconstruction efficiency as function of track p_T and cos(theta)
- **12.** Fitted track momentum resolution as function of p_T and cos(theta)
- 13. Efficiency of V-reconstruction ($K_{sr} \Lambda$) with calorimeter assisted tracking
- 14. Efficiency vs purity for B id for various integration times

Tracker contributions to benchmarking section

- 1. Higgs recoil mass measurement precision from ZH production (mandatory reaction)
- 2. Secondary vertex reconstruction efficiency from ZH, H-> cc (mandatory reaction

List of Tables for LOI

- 1. Main parameters of the vertex-tracker system: barrels / disks Radii of layers, extend of layers, z-position of disks, number of channels, number of modules, stereo angle for disks
- 2. Sensor technology options for vertex detector with pros and cons
- 3. Estimated power consumption and thermal budget description

IDAG Questions

- Sensitivity of different detector components to machine background as characterized in the MDI panel
 - Addressed through different vertex sensor detector technologies
- Calibration and alignment schemes
 - University of Michigan system
- Status of an engineering model describing the support structures and the dead zones in the detector simulation
 - Described in the main text
- Plans for getting the necessary R&D results to transform the design concept into a well-defined detector proposal
 - Will be addressed in the description about sensor technologies and R&D
- Push-pull ability with respect to technical aspects
 - Defer to overall write-up on push-pull
- A short statement about the energy coverage, identifying the deterioration of the performances when going to energies higher than 500 GeV and the considered possible detector upgrades.
 - Background plot will include 1 TeV running
- How was the detector optimized: for example the identification of the major parameters which drive the total detector cost and its sensitivity to variations of these parameters
 - No optimization done as of yet