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Overview

•What are the goals?

• PFA implementations

•Current performance (mostly sid01)

•Use in benchmarking & analysis

• Planning for the LOI
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What are the goals?

•Most critical: Demonstrate acceptable physics performance 
for LOI

• Without this we are dead in the water

• Not the end, though: Algorithms will continue to improve post-LOI

•Give guidance on detector design choices

• Input given on some sid02 decisions (e.g. HCAL depth)

• Now is not the time to start another round of detailed optimization!

• ... but post-LOI we may want to think again.
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What are the goals?

• So what is “acceptable physics performance”?

• The real answer will come from benchmark analyses.

• ... including jet-finding, jet flavour ID, PID, efficiency, etc etc etc

• Both absolute performance & performance relative to ILD/4th matter

•We use some PFA-centric tests as a prerequisite:

• Look for dijet mass resolution of 3-4% (comparable to Γ for W, Z)

• Want ΔMZ/MZ ~ 3-4% for dijet mass residuals in
e+e− → Z(νν) Z(qq) @ 500 GeV (q=u,d,s)

• Want ΔECM/ECM ~ 3-4% for e+e− → qq (q=u,d,s)

• This is not the physics -- this is what you need before it 
makes sense to try and do the physics.
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• Pandora

• See Marcel’s talk.

• Caveat: We can run Pandora on “SIDish” but we can’t run it on SiD. 

• Steve’s PFA

• Track-based PFA developed by Steve Magill.

• Iowa PFA

• PFA development led by Iowa group (Usha, Mat, Tae Jeong)

• Several crucial pieces provided by other groups, e.g. photon-finding, 
PPR-tracking, calibration by Ron; DTree clusterer by NIU; shower 
point finder & MIP ID evolved from Steve’s code.

PFA implementations
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Steve’s PFA

•Extrapolate tracks into calorimeters & find MIP component

• Uses semi-cheated track list & standard helix swimming

• Find photons among non-MIP ECAL hits

• For each track, build a shower by adding clusters until E/p 
balanced

•Check for charged shower fragments mis-ID’d as photons

• Merge cluster into shower if close to track and E/p would be valid

• Build neutral hadrons from leftover clusters

•Check for charged shower fragments mis-ID’d as n. hadrons

•Make reconstructed particles for output
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For more detail, see Steve’s 
talk in parallel session.



Iowa PFA
• Find photons. Set to one side.

• Run DTreeClusterer on remaining hits

• Within each DTreeCluster, look for substructure
• MIP segments, clumps, etc

• Define score to link them based on geometric quantities

• Fuzzy clustering for individual / small-cluster / halo hits

• Extrapolate tracks to calorimeter, match to “seed” clusters
• Uses semi-cheated track list (FSReconTracks) and custom local helix extrapolation

• Try to break up seeds if flagged as photon but not electron, or if just plain too big

• Build charged showers outwards from seeds
• Use links based on score, E/p

• Parameters adjusted iteratively if cluster has wrong E/p

• If multiple charged showers overlap, bundle them together for E/p checks etc

• Second & third passes to pick up clusters missed earlier

• Build neutral hadron showers from remaining clusters

• Uses muon system endcap as tail-catcher
7

For more detail, see Tae 
Jeong’s talk in parallel session.



Current performance

•There isn’t just one single number for performance.

• Which PFA?

• Which physics process and beam energy?

• Which detector? (sid01, sid01_scint, sid02, ...)

• Using the muon system?

• Which angular range?

• What tracking?

• Quoting resolution how? (full RMS vs rms90 vs single Gaussian σ...)
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Metrics

•Processes we use for quick benchmarking of PFAs:

• e+e− → qq @ 91/100/200/500 GeV, looking at energy sum

• e+e− → Z(νν) Z(qq) @ 500 GeV, looking at dijet invariant mass

• These are chosen to be simple to analyze

• Force q=u,d,s -- so no primary neutrinos

• Only two jets -- so no penalty for jetfinding mistakes

• e+e− → qq events offer direct comparison with Pandora results

• ZZ events give nice, mixed range of jet energies (harder but more 
realistic -- exposes non-linearities in response etc)

•We always quote results as rms90 (or α90 etc)

• It’s weird but this is the convention now.

• Remember that rms90 is only ~80% of full RMS for a Gaussian.
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Baseline performance
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e+e− → Z(νν) Z(qq) @ 500 GeV for sid01

Plotting (reco-true) residuals for m(qq)

Let’s look at this for the various PFAs...

If I had to pick one measure of performance, this would be it.
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e+e− → Z(νν) Z(qq) @ 500 GeV for sid01, |cosθ|<0.8

I will focus mostly on Iowa PFA performance for the rest of the talk.



Baseline performance
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e+e− → Z(νν) Z(qq) @ 500 GeV for sid01 including muon endcaps
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|cosθ|<0.8: dM/M = 4.2% 0.8<|cosθ|<0.95: dM/M = 4.0%

• We are close to the upper edge of the “acceptable for physics” 
range (with numerous caveats, especially rms90 vs RMS)

• But in the longer term, we want to be doing significantly better.

If I had to pick one measure of performance, this would be it.



Angular dependence
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Aside from tracking, two main issues:
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At small jet angles, particles 
are lost down the beampipe

For high energy jets, leakage/punch-
through degrades resolution:

• Bad in center of barrel: cos(θ) ~ 0
• Better at cos(θ) ~ 0.8 where HCAL is 

deeper
• Endcap with cos(θ) ~ 1 is bad using 

ECAL+HCAL alone...
• ... but using muon endcap as a tail-

catcher helps a lot

Dead material



Angular dependence
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ρ-z projection of sid01, showing a qq500 event:

ECAL HCAL

Muon system
Solenoid

This is with the 
sid01 muon system 
(5cm steel plates). 
The sid02 baseline 
uses 20cm plates.
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No significant difference or angular dependence 
for 100 GeV jets in barrel or overlap region. 
Leakage is not the dominant problem.

Small improvement for 100 GeV 
jets in forward region -- may not 
be statistically significant. 
Acceptance dominates at small 
angles.

No significant difference for 250 GeV jets in 
barrel region |cos(θ)|<0.75. Leakage is 
dominant effect but the MUCAL endcap 
doesn’t help us here.

Big improvement for 250 GeV 
jets in overlap/endcap region. 
MUCAL solves the leakage 
problem and makes endcap 
resolution much better than 
barrel. Acceptance dominates at 
very small angles

sid01

Important caveat: These results are for sid01 which has an 
unrealistic muon system (3x3cm transverse & 5cm longitudinal 
segmentation). It’s not clear how performance will look for sid02.

End of solenoid



Energy dependence
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sid01 |cos(θ)| rms90 of ECM (GeV) ΔECM/ECM

qq100 0.0-0.8 3.47 3.5%

qq200 0.0-0.8 5.76 2.9%

qq500 0.0-0.8 18.86 3.9%

qq500 0.8-0.95 16.19 3.3%

Caveat: strong angular dependence for 250 GeV jets.

•So aside from leakage problems for 250 GeV jets in sid01 barrel, 
energy resolution is between 3.0% and 3.5% across the board.

•... and therefore so is estimated mass resolution for mono-
energetic jets.

•Compare to real mass resolution in ZZ events of 4.0-4.2%.
Within the approximation m12 = 2E1E2(1-cosθ12),  and for qq dijet events with E1=E2=ECM/2 

and ΔE1=ΔE2=ΔECM/√2:  ΔM/M=ΔECM/ECM. Watch out: ΔEjet/Ejet = √2(ΔECM/ECM)



HCAL technology
Important caveats:

• 1cm x 1cm segmentation assumed for both RPC & scintillator.

• Currently, algorithm leans heavily on E/p -- this favours a scintillator 
HCAL. This advantage may go away with better pattern recognition.

• Can only compare results in barrel region (muon endcaps turned off) 
due to typo in muon system description for sid01_scint.
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sid01 sid01 sid01_scint

qq100 ΔECM/ECM = 3.5% ΔECM/ECM = 3.1%

qq200 ΔECM/ECM = 2.9% ΔECM/ECM = 2.8%

qq500 ΔECM/ECM = 3.9% ΔECM/ECM = 3.5%

ZZ ΔM/M = 4.2% ΔM/M = 3.8%

Scintillator gives ~ 10% better performance.
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Not a large difference at low 
energy; fast MC a bit better.

sid01
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Iowa PFA & Fast MC roughly 
equal for 100 GeV jets.

sid01



)|!|cos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
C

M
/E

C
M

E
"

E
n

e
rg

y
 r

e
s

o
lu

ti
o

n
 (

0

0.02

0.04

0.06

0.08

0.1

0.12 Fast MC
PPR (cheating)

Steve

Iowa
Calorimetery

qq500

PFA comparison: qq500

20

Iowa PFA doing better than 
Fast MC for high-energy jets.

sid01

Leakage affects real PFAs strongly, but not Fast MC. (Calorimetry 
uses barrel and endcap muon systems as tail-catchers.)



Huge table of results
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sid01 qq100
barrel

qq100
forward

qq200
barrel

qq200
forward

qq500
barrel

qq500
forward

ZZ
barrel

ZZ
forward

Cheating 
(PPR)

1.7 GeV
1.7%

1.8 GeV
1.8%

2.8 GeV
1.4%

3.0 GeV
1.5%

5.8 GeV
1.2%

6.2 GeV
1.2%

2.3 GeV
2.6%

2.5 GeV
2.8%

Fast MC 
(default)

3.1 GeV
3.1%

3.0 GeV
3.0%

5.9 GeV
3.0%

5.1 GeV
2.6%

26.6 GeV
5.4%

23.8 GeV
4.8%

3.4 GeV
3.8%

3.5 GeV
3.9%

Iowa PFA
3.5 GeV

3.5%
3.6 GeV

3.6%
5.8 GeV

2.9%
6.2 GeV

3.2%
18.9 GeV

3.9%
16.2 GeV

3.3%
3.8 GeV

4.2%
3.6 GeV

4.0%

Steve PFA
4.0 GeV

4.0%
4.1 GeV

4.0%
7.7 GeV

3.9%
9.0 GeV

4.5%
39.0 GeV

7.6%
48.5 GeV

9.1%
5.0 GeV

5.4%
5.7 GeV

6.1%

(Many of these numbers from Ron -- thanks!)

“Barrel” means |cos(θ)|<0.8; “forward” means 0.8<|cos(θ)|<0.95.



Improvement over time
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What’s been shown today is just a snapshot.
PFA implementations are continually improving!
For example, here is the ZZ resolution in the Iowa PFA:

sid01 barrel sid01_scint barrel

Sep 2008 4.2% 3.8%

Aug 2008 4.3% 3.9%

July 2008 4.6% 4.2%

June 2008 5.0% 4.8%

April 2008 4.9% 4.9%

March 2008 5.3%

Feb 2008 5.8%

Jan 2008 5.7%

Nov 2007 5.9%

Oct 2007 6.3%

We expect to reach zero resolution some time in 2010.  :)



Tracking
•PFA depends heavily on tracking.

•Current results based on ReconFSTracks list (requires 4+ hits 
in tracker; smeared with fast MC; final-state particles)

• Various ways to use these tracks:
• Extrapolate smeared track as helix. [Steve]

• Take last 3 SimTrackerHits & fit local helix. [Iowa stable]

• Extrapolate smeared track to last tracker hit, correct for offset, continue 
extrapolation. [Iowa testing]

•Now testing out the brand new real tracking algorithm
• PFA track extrapolation/matching code re-written for this.

• Proof-of-principle: PFA compiled & run with new tracking code.

• Hard part comes next: understanding PFA differences w.r.t. cheat tracks.

•Obvious but worth bearing in mind: switching to real tracking 
will degrade our resolution.
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Tracking
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Concrete evidence! 
Here is a plot made 
with real tracking.

Next step: Testing 
with benchmarking 
group.

But...
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Tracking

•Not clear if we should use real tracking for the bulk of the 
production PFA reconstruction for the LOI.
• Interactions with PFA not yet understood.

• Reconstruction of kinks/V0/interactions needed in general...

• ... but some modes might be suitable (e.g. e+e− → ZH, Z → μ+μ−)
• If we had another couple of months, this might be a different story. 25
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Concrete evidence! 
Here is a plot made 
with real tracking.

Next step: Testing 
with benchmarking 
group.

But...



sid02

26

sid01 barrel sid02 barrel sid01 forward sid02 forward

qq100 3.5% 3.5% 3.6% 3.4%

qq200 2.9% 2.8% 3.2% 2.9%

qq500 3.9% 3.5% 3.3% 3.8%

ZZ 4.2% 4.2% 4.0% 3.8%

•Caveat: Still very preliminary & certain to change!

•Main differences (for PFA) between sid01 & sid02:

• Better acceptance (inner r=26cm → 20cm for calorimeter endcaps)

• Deeper HCAL (34 → 40 layers)

• Coarser muon system segmentation (5cm → 20cm steel plates)



Comparison with Pandora
•This is a hard thing to do properly! So far no true apples-to-

apples comparison has been done:
• While we know the general parameters of the LDC00Sc detector 

Mark uses, it’s been nigh impossible to get the fine details -- therefore 
we haven’t been able to simulate LDC00Sc in org.lcsim properly.

• European geometry description complex -- too hard to build a 
detector from scratch. Marcel has made several SiDish detectors by 
deforming LDC00Sc, but none is a true sid01.

• And there are other issues too, e.g.
• Tracking (TPC vs silicon, details of cheating)

• HCAL segmentation

• Pandora is tuned for LDC00Sc, not SiD.

• Bottom line: impossible to completely decouple comparing 
detectors from comparing algorithms.

• That said...
27



Comparison with Pandora
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sid01 org.lcsim
sid01

org.lcsim
sid01_scint

Pandora
LDC00Sc

qq90 ΔECM/ECM = 3.9% ΔECM/ECM = 3.4% ΔECM/ECM = 2.5%

qq100 ΔECM/ECM = 3.5% ΔECM/ECM = 3.1%

qq200 ΔECM/ECM = 2.9% ΔECM/ECM = 2.8% ΔECM/ECM = 2.2%

qq360 ΔECM/ECM = 2.3%

qq500 ΔECM/ECM = 3.9% ΔECM/ECM = 3.5% ΔECM/ECM = 2.5%

Let’s start with a very unfair comparison: sid01 and sid01_scint 
(excluding muon endcaps) for 0.0<|cos(θ)|<0.8 vs LDC00Sc 
for 0.0<|cos(θ)|<0.7

So our PFA on sid01 is outclassed by Pandora on LDC00Sc.

B=4T, Z=2.7m, R=1.7m, 30+10 layer ECAL, 
40 layer HCAL with 3x3cm scintillator cells.



Comparison with Pandora
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What about a fairer comparison: sid01 vs a SiDish detector?
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Many variants to choose from! Let’s look at the closest to sid01.



Comparison with Pandora
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What about a fairer comparison: sid01 vs a SiDish detector?

Many variants to choose from! Let’s look at the closest to sid01.
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iron thickness 

(20mm)

A

B

C

NB: Scintillator HCAL



Comparison with Pandora
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sid01 org.lcsim
sid01

org.lcsim
sid01_scint

Pandora
SiDish pair A

(mean)

Pandora
SiDish pair B

(mean)

Pandora
SiDish pair C

(mean)

qq90 3.9% 3.4% 3.1% 3.1% 3.1%

qq100 3.5% 3.1%

qq200 2.9% 2.8% 2.8% 2.8% 2.8%

So we’re actually getting competitive with Pandora in this 
energy range.

(... but what about qq500? No SiDish data yet -- CPU time 
limitations.)

ΔECM/ECM



Performance summary

•PFA performance is getting there.

• Energy resolution 3.0-3.5% for qqbar events up to Ejet=100 GeV

• For Ejet=250 GeV, resolution similar in endcaps but degraded by 
leakage in barrel. (sid01)

• Dijet mass resolution ~ 4.0-4.2% for ΣEjet~250 GeV.

• Performance roughly same as Fast MC.

•Competitive with Pandora on similar detector for Ejet≤200 
GeV -- but performance at higher energies not yet clear.

•We still have a lot of improving to do...

• ... but we’re not in too bad shape to do physics studies for 
the LOI with appropriate disclaimers.

•Caveat: Results shown today use cheated tracking.
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Physics analysis

• Light quark jets are all very well, but what about physics?

• Lots of work to do for the LOI benchmarks!

• Some analyses already started (see upcoming slides)

• But we need to be moving much faster here.
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LCFI tests: B-tagging
•Study by Keith Fratus (working with Tim Barklow)

• Processed ZZH events with Fast MC, PPR, Iowa PFA.

• Fed output reconstructed particles into LCFI (Marlin).

34

Tagging efficiency for Fast MC, gg g y ,
without cheating

Fast MC

Tagging efficiency for Ron's PFA, gg g y ,
without cheating

PPR

Tagging efficiency for Matt's PFA, gg g y ,
without cheating

Iowa PFA

uds

c

b

uds

c

b

uds

c

b

Proof of principle: PFA output processed OK.



ttbar analysis
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Erik Devetak has used both Fast MC & PFA 
reconstructed particles as inputs to his 
analysis. Comparing the two:

Top mass looks pretty good.

AFB measurement 
works fine.

Some discrepancies in 
flavour-tagging...

PFA
Fast MC



Issues for analysis use
•Lots of effort put into getting PFA output into a form that can 

be plugged into physics analysis

• Ron has done a lot here

• Special thanks to our guinea pigs (Erik, Kevin, Tim)

• Reconstructed particles for PFA vs for physics

• This turns out to be quite complicated -- still figuring it out.

• Basic issue is that PFA is designed to reconstruct the final-state 
particles, whereas physics analysis needs the initial-state particles.

• Example: Charged secondaries from kinks, V0s, material interactions, etc 
may be screwing up the jet flavour tagging.

• Please start testing your analysis as soon as possible!

• Chances are good it will uncover some new teething problem.

• We are happy (eager!) to help, but it may take time to understand & fix.
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The LOI
•Broadly, PFA group has four things to do:

1. Converge on a stable PFA version, freeze it, and use for production.

2. Help analysts use the PFA output & fix inevitable bugs/problems

3. Document the work done

4. Continue improving PFA

•Note that there is some
tension (esp. #1 vs #4).
Care needed.

•Usual plan: Long supporting
note + LOI contributions.

•Details & responsibilities to
be thrashed out in the next
few days.
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• SiD organization  

 

II Global issues (10) 

• The machine-detector interface: rationale, engineering drawings … 

• IR hall, assembly, access … 

• Push-pull issues, to include: strategy, time estimate, alignment, 

calibration… 

• Backgrounds 

 

III Subsystems: for each, to include:  

• Performance requirements, pointers to physics benchmarks 

• Design outline, including engineering details, drawings etc 

• Technology options 

• Baseline choice(s) 

• Front-end electronics 

• Performance: spatial resolution, efficiencies, energy/momentum resolution 

… 

Tracking system (10+) 

EM calorimeter (10+) 

HCAL (10+)  

Forward systems (5?) 

Magnet (5 or less) 

Muon system (5) 

DAQ (1) 

Simulation tools + infrastructure, PFA … (5) 

 

IV Benchmarking results (25?) 

 

V Cost estimate (5) 

 

VI R&D (3) to include: 

• Needs for further R&D 

• Plans, goals, benchmarks, timescales 

(+ input to many 
subsystem sections)



Afterword
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Pandora opened the forbidden box



Afterword
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Pandora opened the forbidden box
and unleashed all the evils of the world.



Afterword
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Pandora opened the forbidden box
and unleashed all the evils of the world.
But after all the evils had fled, at the 
bottom of the box, she found Hope.

H0


