PFA Template Algorithms

S. Magill

ANI

Description of PFA Template Algorithms

Detailed Description of Track-CAL Shower Association

First Results on reduced material detector

PFA Template Concept

Modular PFA composed of multiple individual particle ID algorithms

Common IO throughout PFA for cluster, ID algorithms

- allows interchangeability of algorithm order, cluster algorithms
- ease of adding, swapping algorithms

Relies as much as possible on single particle tuning of individual algorithms (as opposed to process tuning)

- can test/tune individual algorithms in test beam(s)

Common Starting Algorithms for Templates

DigiSim

- hit digitization, timing, threshold cuts

Perfect PFA

- standard Perfect RPs, cheated tracks

PFA Template 1

Cheated Tracks Track Extrapolation Maps **Track-Mip Association** Track-Cal Cluster Matching Photon Finder I (R. Cassell) Photon Finder II (Low E photon clusters) Track Proximity Cleaner for photon candidates Neutral Hadron Finder (includes Track Proximity Cleaner) **Reconstructed Particles** -> Jet Finding

rms90 = 4.00 GeV α = 40% (qqbar100 ESum)

PFA Template 2

Cheated Tracks Track Extrapolation Maps **Track-Mip Association** Photon Finder I (R. Cassell) Track-Cal Cluster Matching Photon Finder II (Low E photon clusters) Track Proximity Cleaner for photon candidates Neutral Hadron Finder (includes Track Proximity Cleaner) **Reconstructed Particles** -> Jet Finding

rms90 = 3.71 GeV α = 37% (qqbar100 ESum)

Associating Cal Showers with Tracks Track/Mip and Track/Shower Algorithms for PFA Template

Tracks

- cheated, from Perfect PFA (ReconFSTracks)
- extrapolated using helical swimmer with MC p, MC origin, charge, Bz
- ready for real track extrapolation with measured p, origin, charge, Bz

Track Extrapolation Map Utility

-maps spacepoint to track extrapolated to E0, EM Shower Max, H0

Track Mip Cluster and Interaction Layer Finder

- uses CAL hits layer-by-layer to build mip cluster on extrapolated track
- based on hit densities, independent of hit energies
- outputs are mip cluster, interaction layer of track (IL), extrapolated track spacepoint at IL

Track Shower Cluster Finder

- currently uses DT cluster algorithm with 3 hit minimum
- associates clusters to tracks starting from IL
- first, finds core clusters by searching in same region as mip finder
- uses cluster proximity ($\Delta\theta, \Delta\phi$) and E/p measure based on CAL resolution for p
- iterates expanding cone until E/p window is met or max cone size is reached
- outputs are track shower clusters (includes mips, core, and shower)

Comparison of Mip Cluster endpoint and Track (MC Truth) endpoint

pT (GeV)

Performance of Track Mip Finder – Determination of IL

Interaction Layer all Tracks

1-50 GeV pions, 4-176 degrees in SiD01

Performance of Track Mip Finder – Fits of exponential to shape

Comparison of Track and Mip Endpoints – exponential fit to ECAL 1-20

exp - exp_1

Summary of Track Mip Finder Performance

Mip finder associates CAL hits to extrapolated tracks

- uses cal hit density defined in code no energy needed
- no calibration for mip cluster energy dE/dx used (required)*

Also determines layer of first particle shower interaction

- good agreement with expected IL distribution from material
- good agreement with MC Track endpoint (understood differences)
- useful as starting point for Track/Shower association

Left to do :

- optimize density cut (done?) tune to muons?
- use Eloss-dependent helix to improve endcaps
- allow for tracks that enter ECAL from beampipe after layer 0

Track/Shower Association on single pions

Efficiency ~ 89% E or hit

Track-Mip, Track-Shower Association Performance – qqbar100 SiD01

MC Particle Purity TrMips per event

MC Particle Purity per TrCoreClus

MC Particle Purity TrCores per event

MC Particle Purity TrCALs per event

Efficiency of TrCALs per event

Summary of Track Shower Matching Performance

+90% purity and efficiency for matching showers to tracks in these qqbar100 events

Worse for higher E events and for these events, 4% contamination could mean as much as 5 GeV of misidentified energy

Also, the ~10% missing hits from pions could combine with other particles in the event to make clusters -> extra counting of energy/particles

Improvements coming :

-> re-clustering scheme for large clusters (E>>p matches) becomes more important at higher energies

-> directed core finding after mips for non-spherical clusters using hit association by layer (helps in RPC detector)

-> (unrelated) cluster merge algorithm for neutral hadron finding

Tests of SiD01 with reduced material

Detector model – SiD01 with tracking supports removed, silicon minimized

Why?

MC Generator final state particles ≠ Perfect PFA particles

Perfect PFA ESum is NOT just the sum of gaussian distributions as determined by the calorimeter performance of photons and neutral hadrons (early "back-ofthe-envelope" calculations of PFA performance)

Perfect PFA depends on the detector design and material – non-gaussian contributions to the total ESum rms for the Perfect PFA could be large and could also affect even more the real PFA performance

-> ILD (gaseous tracker) performance better than SiD due in part to this effect?

-> is the size of the contribution from the effects of decays and interactions large compared to the figures of merit to be optimized in SiD (ECAL and HCAL resolutions)?

-> is this contribution smaller than our real PFA confusion?

(dE/E)90 0.100 T sid01 ppr 0.095 sid01ntm ppr ▲ sid01 UI 0.090 sid01ntm UI ✗ sid01 Steve 0.085 sid01ntm Steve 0.080 0.075 0.070 0.065 0.060 0.055-0.050 0.045 0.040 0.035 -0.030 0.025 0.020 0.015 0.010 0.005 0.000 -0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

qq events at cmE=500: Eres90

Looks like effect is small – no effect on perfect or real PFA for qqbar500 events -> will check more thoroughly and with other processes to get estimates of the size of contribution to the ESum

cos(theta)