SeedTracker Update

- Material Modeling for Planar Geometry (Cosmin)
- Forward Tracking (Partridge)

Cosmin Deaconu and Richard Partridge
June 6, 2008

Material Modeling for Planar Geometry

- SeedTracker uses a χ^{2} function for essentially all decisions
- χ^{2} takes into account residuals from the helix fit, any pulls required to meet kinematic constraints ($\mathrm{eg} \mathrm{p}_{\mathrm{T}}>\mathrm{xx}$), and in the future will include any pulls required to meet geometric constraints (eg track just missed end of strip)
- For most tracks, hit resolution is dominated by multiple scattering errors
- Need to do a good job of modeling multiple scattering errors
- SiD. Planar Geometry
- Detector Model has 1000s of individual geometry elements
- Inefficient to model material for each element individually
- Group together all elements that are daughters of a common compact.xml definition
- Model grouped elements as thin
 cylinders or disks
- Setting up SeedTracker to use planar hits instead of virtual segmentation hits was up and running within ~ 1 hour of first attempt
- SeedTracker was designed to be flexible on where hits came from
- Cosmin began looking at hit residuals, and saw very large tails
- Problem was traced to errors in material modeling
- Coordinate transformations from local to global coordinate systems was not being done
- Enormous amount of material lumped in small region
- Tracks that traversed this region were given enormous multiple scattering errors, leading to large residuals since outer tracker hits were effectively ignored

Geometry Trouble - Solved

- New geometry system developed by Jeremy and Tim has hierarchical architecture
- Properties of each element are stored in bottom level of hierarchy (shape, material, local coordinates)
- Once at the bottom of the hierarchy, no methods exist to transform your local coordinates back to global coordinates
- Not a problem for DetectorElements, which provide these methods
- However, we want to pick up all dead material, not just the DetectorElements
- Need to construct a "path" as you work your way down from the top of the hierarchy to the bottom
- Given such a path, you can get the local to global transform
- Cosmin finally got this working yesterday after 2-3 weeks working with Tim and RP to understand geometry system
- This was much too hard to make work correctly!!
- SiD. Forward Tracking
- Forward tracking differs from barrel tracking in two fundamental ways
- Stereo sensor pairs in the forward region
- Measurements coordinates are effectively $r^{*} \phi$ and r, not $r^{*} \phi$ and z
- Handling stereo hits ended up being fairly complicated
- Change in measurement coordinate was fairly straightforward
- Tracker endcap stereo layers are separated by 4 mm in SiD01
- This distance is nearly 3 orders of magnitude greater than the $\sim 7 \mu \mathrm{~m}$ intrinsic resolution for a strip sensor
- Unless the track is traveling normal to the sensor planes, the $\mathrm{x}-\mathrm{y}$ hit position will be different in the two stereo sensors
- Hits formed from a stereo pair will in general end up in the wrong place unless you account for the direction of the track
- ~1 mrad resolution on track direction needed before hit resolution is dominant
- Conundrum for tracking in the forward direction:
- Can’t fit the helix without knowing the hit positions
- Can't determine the hit positions without knowing the helix
- A track seed’s first fit is used to estimate helix so multiple scattering errors can be calculated
- For this first fit, calculate stereo hit positions assuming the track is from the origin, with large hit position due to uncertainties in the track direction
- The track seed is immediately re-fit including multiple scattering errors
- Use track direction and helix errors to generate a corrected position and covariance matrix for each stereo hit
- Additional fits are performed as hits are added to the track seed, further reducing uncertainties in the track direction

- $\sqrt{\text { SiD }}$. Stereo Hit Coordinates

- Let sensor coordinates be given by u, v , and w
- u is the measurement coordinate
- v is the coordinate along the strip direction
- w is the coordinate normal to the sensor surface
- Take sensor origin to be the point in the sensor plane ($\mathrm{w}=0$) where $\mathrm{u}=\mathrm{v}=\mathrm{w}=0$
- Hit positions in the stereo layer pair are then given by

$$
\begin{aligned}
& \vec{r}_{1}=\vec{O}_{1}+u_{1} \hat{u}_{1}+v_{1} \hat{v}_{1} \\
& \vec{r}_{2}=\vec{O}_{2}+u_{2} \hat{u}_{2}+v_{2} \hat{v}_{2}
\end{aligned}
$$

- The stereo hit coordinate is obtained by taking the midpoint between the hit positions in the two layers

$$
\vec{r}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}
$$

- SiD. Straight-Line Track from Origin

- For the first fit, we assume we have a straight-line track from the origin in calculating stereo hit posiitons

$$
\begin{aligned}
\vec{r}_{2} & =\gamma \vec{r}_{1} \\
\vec{O}_{2}+u_{2} \hat{u}_{2}+v_{2} \hat{v}_{2} & =\gamma \vec{O}_{1}+\gamma u_{1} \hat{u}_{1}+\gamma v_{1} \hat{v}_{1}
\end{aligned}
$$

- 3 linear equations in 3 unknowns (γ, v_{2}, and $\gamma \mathrm{v}_{1}$)
- Solvable, but algebraically messy
- Don't even want to think about error matrix...

- SiD. Straight-Line Track from Origin II

- Problem simplifies considerably if we assume sensors are parallel $\hat{u}_{1} \times \hat{v}_{1}=\hat{u}_{2} \times \hat{v}_{2}=\hat{w}$
- Can now solve for $\gamma, \mathrm{v}_{1}, \mathrm{v}_{2}$, and hit position

$$
\begin{aligned}
\gamma & =\frac{\vec{O}_{2} \bullet \hat{w}}{\vec{O}_{1} \bullet \hat{w}} \\
v_{1} & =\frac{\left(\vec{O}_{2}+u_{2} \hat{u}_{2}-\gamma \vec{O}_{1}-\gamma u_{1} \hat{u}_{1}\right) \bullet \hat{u}_{2}}{\gamma \hat{v}_{1} \bullet \hat{u}_{2}} \\
v_{2} & =\frac{\left(\vec{O}_{2}+u_{2} \hat{u}_{2}-\gamma \vec{O}_{1}-\gamma u_{1} \hat{u}_{1}\right) \bullet \hat{u}_{1}}{\hat{v}_{1} \bullet \hat{u}_{2}} \quad \hat{v}_{2} \bullet \hat{u}_{1}=-\hat{v}_{1} \bullet \hat{u}_{2} \\
\vec{r} & =\frac{(1+\gamma)}{2}\left(\vec{O}_{1}+u_{1} \hat{u}_{1}+\frac{\left(\vec{O}_{2}+u_{2} \hat{u}_{2}-\gamma \vec{O}_{1}-\gamma u_{1} \hat{u}_{1}\right) \bullet \hat{u}_{2}}{\gamma \hat{v}_{1} \bullet \hat{u}_{2}} \hat{v}_{1}\right)
\end{aligned}
$$

- SiD. Track with Known Direction

- Second fit uses track direction from first fit to estimate stereo hit positions
- Assume momentum vector is constant between sensor planes

$$
\begin{aligned}
& \vec{r}_{2}=\vec{r}_{1}+\gamma \hat{p} \\
& \vec{O}_{2}+u_{2} \hat{u}_{2}+v_{2} \hat{v}_{2}=\vec{O}_{1}+u_{1} \hat{u}_{1}+v_{1} \hat{v}_{1}+\gamma \hat{p}
\end{aligned}
$$

- Can solve for unmeasured coordinates and hit position

$$
\begin{aligned}
\gamma & =\frac{\left(\vec{O}_{2}-\vec{O}_{1}\right) \bullet \hat{w}}{\hat{p} \bullet \hat{w}} \\
v_{1} & =\frac{\left(\vec{O}_{2}+u_{2} \hat{u}_{2}-\vec{O}_{1}-u_{1} \hat{u}_{1}-\gamma \hat{p}\right) \bullet \hat{u}_{2}}{\hat{v}_{1} \bullet \hat{u}_{2}} \\
v_{2} & =\frac{\left(\vec{O}_{2}+u_{2} \hat{u}_{2}-\vec{O}_{1}-u_{1} \hat{u}_{1}-\gamma \hat{p}\right) \bullet \hat{u}_{1}}{\hat{v}_{1} \bullet \hat{u}_{2}}
\end{aligned}
$$

- SiD. Hit Position Uncertainty

- For first fit, use previous equations with uncertainty:

$$
\sigma\left(\hat{p} \bullet \hat{u}_{i}\right)=2 / \sqrt{12}
$$

- For fits where track direction is known, there are two components to the hit uncertainty:
- Uncertainties in measured coordinates u_{1} and u_{2}
- Uncertainty in track direction

$$
\begin{aligned}
\vec{r} & =\frac{\vec{r}_{1}+\vec{r}_{2}}{2} \\
\delta \vec{r} & =\frac{\partial \vec{r}}{\partial u_{1}} \delta u_{1}+\frac{\partial \vec{r}}{\partial u_{2}} \delta u_{2}+\sum_{i} \frac{\partial \vec{r}}{\partial \hat{p}_{i}} \delta \hat{p}_{i} \\
\delta \hat{p}_{i} & =\frac{\partial \hat{p}_{i}}{\partial \omega} \delta \omega+\frac{\partial \hat{p}_{i}}{\partial d_{0}} \delta d_{0}+\frac{\partial \hat{p}_{i}}{\partial \phi_{0}} \delta \phi_{0}+\frac{\partial \hat{p}_{i}}{\partial z_{0}} \delta z_{0}+\frac{\partial \hat{p}_{i}}{\partial \tan \lambda} \delta \tan \lambda
\end{aligned}
$$

- STD. Hit Position Uncertainty II

- Coordinate r given by

$$
\begin{aligned}
\vec{r} & =\frac{\vec{O}_{1}+u_{1} \hat{u}_{1}}{2}+\frac{\left(\vec{O}_{2}+u_{2} \hat{u}_{2}-\vec{O}_{1}-u_{1} \hat{u}_{1}-\gamma \hat{p}\right) \bullet \hat{u}_{2}}{2 \hat{v}_{1} \bullet \hat{u}_{2}} \hat{v}_{1} \\
& +\frac{\vec{O}_{2}+u_{2} \hat{u}_{2}}{2}+\frac{\left(\vec{O}_{2}+u_{2} \hat{u}_{2}-\vec{O}_{1}-u_{1} \hat{u}_{1}-\gamma \hat{p}\right) \bullet \hat{u}_{1}}{2 \hat{v}_{1} \bullet \hat{u}_{2}} \hat{v}_{2}
\end{aligned}
$$

- Measured coordinate contributions:

$$
\begin{aligned}
& \frac{\partial \vec{r}}{\partial u_{1}}=\frac{\hat{u}_{1}}{2}-\frac{\hat{u}_{1} \bullet \hat{u}_{2} \hat{v}_{1}}{2 \hat{v}_{1} \bullet \hat{u}_{2}}-\frac{\hat{v}_{2}}{2 \hat{v}_{1} \bullet \hat{u}_{2}}=-\frac{\hat{v}_{2}}{\hat{v}_{1} \bullet \hat{u}_{2}} \\
& \frac{\partial \vec{r}}{\partial u_{2}}=\frac{\hat{v}_{1}}{2 \hat{v}_{1} \bullet \hat{u}_{2}}+\frac{\hat{u}_{2}}{2 \hat{v}_{1} \bullet \hat{u}_{2}}+\frac{\hat{u}_{1} \bullet \hat{u}_{2} \hat{v}_{2}}{2 \hat{v}_{1} \bullet \hat{u}_{2}}=\frac{\hat{v}_{1}}{\hat{v}_{1} \bullet \hat{u}_{2}}
\end{aligned}
$$

- $\sqrt{\text { SiD }}$. Hit Position Uncertainty III

- Direction Derivatives:

$$
\begin{aligned}
D_{i, j} & \equiv \frac{\partial r_{i}}{\partial \hat{p}_{j}} \\
& =-\frac{\left(\vec{O}_{2}-\vec{O}_{1}\right) \bullet \hat{w}}{2 \hat{v}_{1} \bullet \hat{u}_{2}} \frac{\partial}{\partial \hat{p}_{j}} \frac{\hat{p} \bullet \hat{u}_{2} \hat{v}_{1, i}+\hat{p} \bullet \hat{u}_{1} \hat{v}_{2, i}}{\hat{p} \bullet \hat{w}} \\
& =-\frac{\left(\vec{O}_{2}-\vec{O}_{1}\right) \bullet \hat{w}}{2 \hat{v}_{1} \bullet \hat{u}_{2}}\left(\frac{\hat{u}_{2, j} \hat{j}_{1, i}+\hat{u}_{1, j} \hat{v}_{2, i}}{\hat{p} \bullet \hat{w}}-\frac{\hat{p} \bullet \hat{u}_{2} \hat{v}_{1, i}+\hat{p} \bullet \hat{u}_{1} \hat{v}_{2, i}}{(\hat{p} \bullet \hat{w})^{2}} \hat{w}_{j}\right) \\
& =\frac{\left(\vec{O}_{2}-\vec{O}_{1}\right) \bullet \hat{w}}{2 \hat{v}_{1} \bullet \hat{u}_{2}(\hat{p} \bullet \hat{w})^{2}}\left(v_{1, i}\left(\hat{p} \times \hat{v}_{2}\right)_{j}+v_{2, i}\left(\hat{p} \times \hat{v}_{1}\right)_{j}\right)
\end{aligned}
$$

- ك $\sqrt{\text { ID }}$. Hit Position Uncertainty IV

- Helix derivatives:

$$
\begin{aligned}
& H_{i, \alpha}=\frac{\partial \hat{p}}{\partial x_{\alpha}} \quad x_{\alpha}=\left\{\omega, d_{0}, \phi_{0}, z_{0}, \tan \lambda\right\} \\
& \hat{p}_{x}=\cos \phi \sin \theta=\omega\left(y-y_{C}\right) \sin \theta=\left(\omega y+\left(1-\omega d_{0}\right) \cos \phi_{0}\right) \sin \theta \\
& \hat{p}_{y}=\sin \phi \sin \theta=-\omega\left(x-x_{C}\right) \sin \theta=\left(-\omega x+\left(1-\omega d_{0}\right) \sin \phi_{0}\right) \sin \theta \\
& \hat{p}_{z}=\cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& x_{C}=\left(\omega^{-1}-d_{0}\right) \sin \phi_{0} \\
& y_{C}=-\left(\omega^{-1}-d_{0}\right) \cos \phi_{0}
\end{aligned}
$$

- SiD. Hit Position Uncertainty V

$$
\begin{array}{ll}
\frac{\partial \hat{p}_{x}}{\partial \omega}=\frac{\hat{p}_{x}}{\omega}-\frac{\cos \phi_{0} \sin \theta}{\omega} & \frac{\partial \hat{p}_{x}}{\partial d_{0}}=-\omega \cos \phi_{0} \sin \theta \\
\frac{\partial \hat{p}_{y}}{\partial \omega}=\frac{\hat{p}_{y}}{\omega}-\frac{\sin \phi_{0} \sin \theta}{\omega} & \frac{\partial \hat{p}_{y}}{\partial d_{0}}=-\omega \sin \phi_{0} \sin \theta \\
\frac{\partial \hat{p}_{x}}{\partial \phi_{0}}=-\left(1-\omega d_{0}\right) \sin \phi_{0} \sin \theta & \frac{\partial \hat{p}_{x}}{\partial \tan \lambda}=-\hat{p}_{x} \sin \theta \cos \theta \\
\frac{\partial \hat{p}_{y}}{\partial \phi_{0}}=\left(1-\omega d_{0}\right) \cos \phi_{0} \sin \theta & \frac{\partial \hat{p}_{y}}{\partial \tan \lambda}=-\hat{p}_{y} \sin \theta \cos \theta \\
\frac{\partial \hat{p}_{z}}{\partial \omega}=\frac{\partial \hat{p}_{z}}{\partial d_{0}}=\frac{\partial \hat{p}_{z}}{\partial \phi_{0}}=\frac{\partial \hat{p}}{\partial z_{0}}=0 & \frac{\partial \hat{p}_{z}}{\partial \tan \lambda}=\sin ^{3} \theta
\end{array}
$$

- $\widetilde{\text { SiD }}$. Hit Position Uncertainty VI

- Put it all together to form the covariance matrix for the hit
- Let D be the $3 x 3$ matrix containing the direction derivatives
- Let H be the 3×5 matrix containing the helix derivatives
- Let C_{H} be the covariance matrix for the helix parameters ($\omega, \mathrm{d}_{0}, \phi_{0}, \mathrm{z}_{0}, \tan \lambda$)
- The covariance matrix for the hit position is then given by:

$$
\begin{aligned}
\operatorname{cov} & =\left\langle\delta \vec{r} \delta \vec{r}^{T}\right\rangle \\
& =\frac{1}{\left(\hat{v}_{1} \bullet \hat{u}_{2}\right)^{2}}\left(\sigma_{u_{1}}^{2} \hat{v}_{2} \hat{v}_{2}^{T}+\sigma_{u_{2}}^{2} \hat{v}_{1} \hat{v}_{1}^{T}\right)+D H C_{H} H^{T} D^{T}
\end{aligned}
$$

- This required some replumbing of the hit infrastructure used by SeedTracker
- Added strip class to encapsulate strip information for stereo hits
- Added public methods to retrieve corrected hit position and covariance matrix
- Incorporated methods in stereo hit class to set helix direction and uncertainties used in calculating the corrected hit position and covariance matrix
- TrackerHit class is now rather over-loaded with functionality...
- Persistance of this information may be an issue in the future...
- Only major issues is handling measurement coordinates
- For forward disks, we measure $r^{*} \phi$ and r, not $r^{*} \phi$ and z
- Helix fitter assumes we are fitting z vs s (s is the x-y path length of the track

$$
z=z_{0}+s \tan \lambda
$$

- To the extent that $\mathrm{r}^{*} \phi$ measures the bend coordinate, the orthogonal coordinate r measures the non-bend coordinate
- In this approximation, take $\delta \mathrm{r}=\delta \mathrm{s}$
- This isn't exactly true because a track that has curved is not perfectly radial
- Not clear if this is important - ignored for barrel as well
- Use an effective error in z for the s-z fit:

$$
\delta z=\delta r \tan \lambda
$$

- FiD. First Results

