

Institut National de Physique Nucléaire et de Physique des Particules

DHCAL with MICROMEGAS

Catherine Adloff

MICROMEGAS

Micro mesh gaseous structure

- Already heavily used
 - COMPASS
 - NA48 charged kaon upstream spectrometer
 - high rate neutron beam profiler of the n-TOF facility at CERN
 - CAST
 - MEDICAL APPLICATIONS
 - Neutron imaging
 - T2K TPC

Overview

- MicroMegas with Analog Readout
- MicroMegas with Digital Readout
 - HARDROC (see N. Seguin talk)
 - New ASIC from IPNL: DIRAC (see R. Gaglione talk)
- Near future
 - Mini calorimeter prototype
 - ASU with digital readout
 - DIF (see G. Vouters talk)
 - Design of a 1m² MicroMegas (see N. Geffroy talk)

MicroMegas Prototypes

• PCB and bulk from CERN (Rui de Oliveira)

- 325 LPI mesh
- spacers : 120 μm height
 300 μm diameter
- pads : 0.98x0.98 cm², 200 μ m between pads

• The chamber

- 95% Argon, 5% Isobutane
- 3mm conversion volume
- a top in Stainless Steel with a copper drift cathode
- The pad readout : analog
 - Gassiplex board : 6 gassiplex chips 96 channels
 Electronics card built for CAST by DAPNIA (P. Colas, P. Abbon)
 - VME sequencer and ADC from CAEN
 - CENTAURE acquisition (SUBATECH, Nantes, D.Roy)

MicroMegas Prototypes

- PCB routing with great care (4 layers)
- Stainless Steel top with holes for X-rays
- 5µm thick copper drift cathode
- Chamber assembly in clean environment

- ⁵⁵Fe source (5.9 keV \rightarrow 228e⁻ in drift volume)
- Trigger on mesh : preamp (T output) + fast ampli

• Response versus pressure

Gain Swhen Atmospheric Pressure **7**

X-ray + Cosmics

X-ray + Cosmics

- Pad with source cut out
- Muon selection : ADC(Pad with highest signal) > 40

Example : 1 night data taking 2 chambers (overlapped pads)

MicroMegas 8cmx32cm

 With digital readout (4 HARDROC ASICs) IPNL-LLR PCB (500 μm interpad)

HARDROCs 64 channels

13 June 2008

Eu-DHCAL Collaboration Meeting

(also equipped with RPC : IPNL)

MicroMegas 8cmx32cm

• The first bulk with ASICs on PCB active part !

• Some nasty tests with the previous 4 channels

⇒ strong protection for sparks is compulsory (see Gassiplex card)

Mini calorimeter prototype

- Test Beam : August 2008 at CERN
 - 3 to 4 MicroMegas-Gassiplex 6cmx16cm ✓
 - − 1 to 2 MicroMegas-Gassiplex 12cmx32cm ✓
 - Stainless Steel Absorbers

MIPs:

- pad homogeneity
- prototypes disparity
- X-talk studies
- efficiency measurements Hadronic showers:
- behaviour in showers

Contribution of the IRFU(CEA-Saclay)

Mini calorimeter prototype

- Test Beam : November 2008 at CERN
 - − 3 to 4 MicroMegas-Gassiplex 6cmx16cm ✓
 - − 1 to 2 MicroMegas-Gassiplex 12cmx32cm ✓
 - 3 to 4 MicroMegas with digital Readout ASU and DIF separated
 - ASU with HARDROC 8cmx32cm
 - ASU with IPNL ASIC 8cmx8cm
 - Stainless Steel Absorbers

ASU with HARDROC

- Based on the IPNL 8 layers PCB with 4 HARDROCs
- No more lines or components outside the pads area (see ASU assembly)
 Da
- Analogue Input with sparks protections

Daisy chain In/Out (hirose connetors)

16

ASU with IPNL ASIC

Conclusion

- First results on small MicroMegas prototypes
- MicroMegas Techno looks promising and competitive with other gas detectors.
- Dedicated studies on FE protection are compulsory
- Further tests are ongoing (Cosmics and TB)

Backup slides

Charge = 820(1500mV)/1024/3.6(mV/fC) = 334 fC

13 June 2008

No significant difference between HV supplies

• Response versus V_{drift} and Gas flow dependencies

• Trigger on 3 scintillators coincidence

Charge $\approx 210(mV)/25/0.312(mV/fC) = 27 fC$

- Muon in 3mm drift volume = 29e⁻
- Gassiplex Readout :

Charge $\approx 80(1500 \text{ mV})/1024/3.6(\text{mV/fC}) = 32 \text{ fC}$

Gain ≈ 6900

Eu-DHCAL Collaboration Meeting

 $\mathsf{V}_{\mathsf{mesh}}$

 $V_{drift} = 470 V$

= 410 V

 After muon selection : distance between pad with highest signal (muon pad) and pad with 2nd highest signal (second pad)

• Signal(second pad) / Signal(muon pad)

- 0.35 μm CMOS technology
- 64 Analog Inputs
- 3 thresholds (DAC 8 bits)
- Covers a large dynamic range
 - RPC : 100 fC to 10 pC (gain= 0.1mV/fC)
 - MicroMegas : 10 fC to 200fC (gain= 5mV/fC)
- Power pulsing

Eu-DHCAL Collaboration Meeting

DACs

Power pulsing

Power supplies Analog control

• Schematic

u (DAC col

Linearity

Low
Medium
High

• First Results (MIP @ 30 fC)

Power Pulsing

Preamp Bias Voltage

Wake up time < 800 ns

 Power Consumption : 1 mW/channel

 \Rightarrow 10 μ W/Channel with power pulsing 500 W for a 50 Million channels DHCAL

Digital InterFace (DIF)

Interfaces with :

The final DAQ

• Separated from the slab for more flexibility.

- up to 100 FE ASICs (HARDROC or IPNL ASIC) with power cycling
- (via LDA, ...) next DIF The analog DAQ Power Neighboring DIFs. Mezzanine **Supplies** +/-5V PC through USB _ 3.3V Monitoring DC 2.5V for standalone tests and debugs. JTAG USB **FPGA ASIC** Config I DA ASIC read **DAQ** interface (HDMI) towards Slow control EP3C16F484 **SLAB** analog (Intemediate Board +ASU) ADC DAQ HARDROCs analog dutput (SCSI) J. Prast S. Cap next DIF 13 June 2008 **Eu-DHCAL Collaboration Meeting** Catherine Adloff 31

Digital InterFace (DIF)

• 12 layers PCB

Ready for tests : end of May

Design of a 1m² MicroMegas

- 10 mm total thickness including
 - 4 mm SS (absorber)
 - 6 mm active volume

Different designs

• 2 DIF case

Mechanics Prototype

- 1m² prototype :
 - assembly tests with ghost ASU
 - Gastight tests

Mechanics Prototype

