LucretiaZAML

Steve Molloy
3" April, 2008

(Updated 19" June, 2008)

AML — A Quick Reminder

* Accelerator Markup Language

- Based on XML

- Looks like HTML!
- Standards designed by W3 Consortium

- Physics designed by Sagan, et al.

* Designed to allow a generic representation of
the physical reality of a beamline

- No need to split quads

- Expandable to include engineering data
* Including the Flight Simulator details

Universal Accelerator Parser (UAP)

e AML is “yet another” lattice representation standard
- Not much good on its own!!

e The real benefit comes from the UAP

Parser

Lattice Input
File -~

AML file

Universal Accelerator Parser
» Convert AML input to UAP structure
» Convert UAP structure to AML file

Convert from/to representation
used by your code,

e.g. Lucretia, PLACET, SAD,

etc.

Lucretia2AML — Motivation

* Flight Simulator will allow ATF2 access from
Lucretia

» Many potential users use different codes

« SAD, Placet, MAD, etfc.
- We can't force them to adopt Lucretia

* |LC Deckmasters plan to move from XSIF to AML
— Thus AML is becoming the new standard

e |_ucretia2ZAML will convert the machine lattice to
AML

- Gives a true representation of the machine in AML

Lucretia and AML lattices:
Differences in philosophy

e |_ucretia

- Designed for ease of use in a
beam tracker

- Each element represents only
one “thing”

- Drifts, BPMs, markers, magnets, etc.

 Magnets with internal BPMs must be
split

- Engineering details only present
when necessary for tracking

 €.g. Girders exist for
assignment of errors

— Not extensible

/ ans =

Offset:
Girder:
TrackFlag:
Slices:
Block:

ans =
Mame: 'IFO1'
Class: 'WARE!'
S: 0.2500
F: 1.3000
Block: [1 3]
ans =

Name:

5:

B

Class:

2

B:

dB:

Angle:
Edgedngle:
HGAF :
FINT:
EdgeCurvature:
Tilt:

P&
Offset:
Girder:
TrackFlag:
Slices:
Block:

i 'KEX1A!
1 0
: 1.3000
: 'SBEN'
: 0.2500
: [0.0108 O]
dB:
Angle:
Edgefngle:
HGAP :
FINT:
EdgeCurvature:
Tilt:
PEY

0

0.0025

[0]

[0.0063 0.0063]
[0, 5000 O]

@ 0]

0

B
[0ooo0o0o]
0

[1x1 struct]
1 3]

[L:d]

'"KEX1B'
0.2500

1. 3000

"SBEN'

0.2500
[0.0108 O]

0

0.0025

[0 0.0050]
[0.0063 0.0063]
[0 0.5000]

@ 0]

0

B
[0ooood]
0

[1x1 struct]
[1 3]

[1 3]

Lucretia and AML lattices:
Differences in philosophy

« AML

- Designed to store the physical
state of the machine

» Tracking information can be extracted
when needed

e Same for engineering information, etc.

« Each element can represent many
“things”.

- Real magnets aren't split!

« BPMs/markers/etc can be on their own or
part of a magnet.

- Extensible

e Lucretia lattice will be a subset of the
AML representation.

4)

<element name = "KEX1A"»
<bendx
<g_u dezign = "0,0433633" err = "0" />
el design = "0" /»
<e? design = "0,008" />
<h_gapl design = "0,00635" />
<h_gap2 dezign = "0,00635" />
<f_intl design = "0.5"
<F_int2 design = "0,6"
<hl design = "0" />
<hZ design = "0" />
<orientation origin = "CEMTER">
Cx_offzet design = "0" />
<x_pitch design = "0" /»
<y_offzet design = "0" />
fy_pitch design = "0" #*
<z_offzet design = "0" />
<tilt design = "0" £
</orientation?
</bend>
“length design = "0.,5" />
<marker name = "IPOL" />

<Selement
_ J

ans =
Name: 'IFO1'
Class: 'WARE!'
S 0.2500
F: 1.3000
Block: [1 2]
ans =

Name:
o 0.2500
;o 1.3000
: 'SBEN'
o 0.2500

o [0.0108 O]

dB:

Angle:

Edgedngle:

HGAF :

FINT:

EdgeCurvature:

Tilt:

P5:

Offset:

Girder:

TrackFlag:

3lices:

Block:

: EEX1AY
0
;o 1.3000
: 'SBEN'
00,2500
o [0.0108 O]
dB:
Angle:
Edgefngle:
HGAF :
FINT:
EdgeCurvature:
Tilt:
P
Offset:
Girder:
TrackFlag:
Slices:
Block:

0
0.0025
[@ 0]
[0.0063 0.0063]
[0, 5000 O]

(@ 0]

0

B
o000

0

[1x1 struct]
1 3]
[L:d]

'"KEX1B'

0

0.0025

[0 0.0050]
[0.0063 0.0063]
[0 0.5000]

[0 0]

0

&5
[0ooood]
0

[1x1 struct]
[1 3]

[1 3]

Lucretia2AML

4)

{element name = "KEX1A">
<bend:
“g_u design = "0,0433633" err = "0O" S
<el dezign = "0" /*
<e? design = "0,006" £

<h_gapl design = "0,00635" />
<h_gap?2 dezign = "0,00635" 4>
«f_intl design = "0,5" /%
«f_int2 design = "0,5" /7

<hl dezign = "0" />

<hZ dezign = "0" />
<orientation origin = "CEMTER"
<x_offset design = "0" />
<x_pitch design = "0" /*
<y_offzet dezign = "0" />
<y_pitch design = "0" #»
<z_offzet dezign = "0" />
<tilt dezign = "0" />
<Sorientation?

</bend>

<length dezign = "0,5" />

<marker name = "IPOL" A
</element.> A‘/

From a previous slide...

| have to write code to supply
this functionality

Coding choice

* Lucretia is Matlab based, while UAP relies on C++

- Matlab allows access to compiled C/C++ via “mex” files

e Compiled C which includes Matlab-supplied headers
- Use this to interface with UAP C++ libraries

 Integrate with C at low level, or only when
needed?

- |.e. Majority of Lucretia2AML in C or Matlab?

 Decided to code almost 100% in C/C++

- Very fast execution speed
- Still relatively simple source code

Utilities for accessing
. parser functions —rc X

make_amldriﬁ—WordPad‘ & - -
File Edit View Insert Format Help

DEzEH && #4

#include <iostream>
#include <string>»
#include <cstring>»
#include "UAP/UAPUtilities.t
#include "mex.h"

B

Matlab C headers

p”

using namespace std;

Pl wvoid make amldrift (U4PNode *EleNode, mxfArray *Elemx) {
f* EleMode is a pointer to the UAPWode for this element.
Elemx is a pointer to the Matlab data structure.*/

— Extract drift name

f# Extract the elements name from the Matlab structure.#®/f and aSSIQn to an
mEdrray *Mamemx = mxGetField(Elemx, 0, "Name™): AML nOde

int Hamelength = mxGetN (Namemx) ;

char *Namechar:;

Hamechar = new char[Hamelength+l]:

mxGetString (Namem=, Namechar, Namelength+l):

string Hamestr (Namechar) ;

f* hdd the "name™ attribute with the string "Namestr™.#/f
EleNode->addAttribute ("name™, Hamestr, false):

f* Don't cause a memory leak.*/f

delete HNamechar:

Extract and

f* Get the length field, and convert it to a C++ double#®f

double Ldoub = mxGetScalar(mxGetField(Elemx, 0, "L")); assign Iength
f* bdd a child node called "length™ to EleNode.#*f 2 2
UAPNode *LengthNode = EleNode-»addChild (ELEMENT MNCDE, "length"}): Informatlon

f* hdd the design attribute with a wvalue of Ldoub.*/
LengthNode-raddAttribute ("de=sign™, EasicUtilities::dmuhle_tu_striHQ(LdDuh, ok}, fal=e):

For Help, press F1 MUM

Status — Completed

Detects elements to be + Power supplies
“unsplit”.

e Girders
Unsplits quads and + Flight Sim. Metadata
bends
- Magnet/mover names
Generates

- Command structure
- BPMSs, drifts, instruments,
markers, quads, bends,
correctors, sextupoles

Element 6D orientation
Magnetic field errors

Status — Still to do

Higher order magnets (octupoles and higher)
RF cavities (longitudinal & transverse)

AML is currently an evolving standard
- Have to work to keep “up to date”

Debugging....

AMLZ2Lucretia

* Operation only requires
Lucretia2AML

- Lucretia and EPICS
representations are equal

- Regularly write to AML file
for other users

e AMLZ2Lucretia useful in the
future

— Recover the historical
machine state { AML file }

AMLZ2Lucretia — Status

* Partially complete

- Many elements completed
— But no power supplies, movers, etc.

* Held up by development of Lucretia2AML

— Work can now continue with more mature
Lucretia2ZAML

* This is of “lower priority” than the other code

Summary

* Lucretia2AML is an important part of the Flight
Simulator

- Working version demonstrated at recent ATF test
and available from Flight Sim. package
* At the Matlab prompt....

— Lucretia2AML ('output’,'outputfilename.aml’)
- Still some work needed

e Mostly debugging
 AMLZ2Lucretia is of lower priority, but still
important

- Development version is working, but much work
needed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

