<u>QUARTZTOF</u>

An isochronous & achromatic Cerenkov Counter Making Cerenkov light parallel → point focusing

Mike Albrow (Fermilab)

New and original design/concept for fast timing Cerenkov counter

Ray-tracing calculations done: Expect > factor 10 more photoelectrons than either GASTOF or QUARTIC Photons arrive promptly (< few ps) at MCP-PMT

Full (wavelength dependent) simulations being done. Needed for [x,y] position dependence over [2mm x 20mm] area.

Two being made for beam tests (July-Aug?).

QUARTZTOF

How many photoelectrons (all prompt)?

$$N_{p.e.} \cong 90.L(cm).sin^{2}(\vartheta_{c}) \qquad \text{PDG Rule-of-thumb}$$
$$= 90.L(cm).\left(1 - \frac{1}{n^{2}}\right)$$
$$\left(1 - \frac{1}{n^{2}}\right)(C4F80 - gas, 1 atm) = 0.0028$$
$$\left(1 - \frac{1}{n^{2}}\right)(QUARTZ) = 0.804, factor \sim 290$$

3 cm quartz ~ 29 x 30cm gas (latter ~ 10 pe.) Difficulty with quartz has been in focusing it. Can have quartz plate e.g. 2mm thick – 45deg concave mirror (proximity focus) which gets ~ 2 x 30 cm gas and is simpler.

QUARTIC design had 64mm quartz in 8 bars, but only few% of light "prompt" Got 3-4 p.e. per bar, say ~ 30 per Quartic

```
36 mm + 15 mm QUARTZTOF \rightarrow 180 + 75 prompt p.e.
```

QUARTZTOF

Mike Albrow CMS-FP420 April 28th 2008

QUARTZTOF

Mike Albrow CMS-FP420 April 28th 2008

Top View: Optics, schematic

Focusing schematic (variations possible) Parallel light can be focused to a point!

QUARTZTOF

"Lucky Light" (chosen by cone angle) focused to central point. Choose **RED** or **UV**. All other wavelengths \rightarrow rings, earlier or later. Earlier light retarded with quartz wedge lens (2mm / 10ps) \rightarrow achromatic

Focusing element E.g. 45° concave mirror or achromatic lens

Designed to point-focus reddest light; all bluer light in halo, $R((\lambda)$ can be retarded. With lens on MCPMT

(here shown normal for simplicity)

QUARTZTOF

Mike Albrow CMS-FP420 April 28th 2008

With focused light can use the best single channel MCP-PMTs Hamamatsu or Photek.

MICROCHANNEL PLATE-PHOTOMULTIPLIER TUBE R3809U-61/-63/-64

Compact High Sensitivity MCP-PMT Series Featuring with Fast Time Response

TTS (single p.e.) < ~ 30ps 100 prompt p.e. < ~ 3ps

FEATURES

●High Sensitivity QE: 12 % (-61), 36 % (-63), 40 % (-64) ●High Speed Rise Time: 200 ps (-61), 180 ps (-63/-64) IRF[©] (Instrument Response Function): 150 ps at FWHM: (-61) 60 ps at FWHM: (-63/-64)

Compact Profile Effective Photocathode: 10 mm diameter (Overall length: 70.2 mm, Outer diameter: 45.0 mm)

APPLICATIONS

Molecular Science
Analysis of Molecular Structure
Medical Science

Photek Microchannel Plate PMT

	PMT210	PMT212
Anode Size	10 mm	12 mm
Electron Gain	10 ⁶	10 ⁶
Peak/Valley	2:1	1.5:1
Dynamic Range cps	40,000	40,000
Pulse Rise Time	100 ps	100 ps
Pulse FWHM	170 ps	170 ps
Transit Time Jitter	30 ps	30 ps
MCP Pore Size	5/6	5/6

QUARTZTOF

Plans:

Discuss with collaborators.

Full simulation especially for {x,y} performance variations, with wavelength dependence of Cerenkov emission, light transmission, reflections and QE (MCP-PMT).

Make two units, with >= 2 MCP-PMTs (single channel) together with state-of-art commercial electronics.

Beam tests at Fermilab June (?) – Aug.

I believe < 5ps timing is possible if electronics up to it (25ns)

QUARTZTOF

Mike Albrow CMS-FP420 April 28th 2008

Additional Slides

Will make prototypes in UVT Plexiglas (cheap and easy to machine at FNAL). Similar optical properties. LHC version probably fused silica (Rad Hard)

Altuglas International

QUARTZTOF

Mike Albrow CMS-FP420 April 28th 2008

QUARTZTOF: 1st simple concept Front section read-out

QUARTZTOF GEOMETRY

QUARTZTOF

CMS-FP420 April 28th 2008

Focusing schematic (variations possible)QUARTZTOFParallel light can be focused to a point!Side view: PMTs UP or DOWN

QUARTZTOF

CMS-FP420 April 28th 2008