

SiTRA test beams at CERN: infrastructure developments and results Annual EUDET meeting NIKHEF

Alexandre CHARPY

General Overview

I. Status of the last test beam

- Overview
- Some results

II.Project

- Test SiTr130-88 chip
- Alignment study

III. Mechanics

- Module conception
- Tools development
- Clean room
- Modules manufacturing

II.DAQ

- FEE electronics
- ALTERA 2
- Software development

Status of the 2007 beam-test and testbench with source @ Paris

- Faraday cage @ Paris:
 - 3D table
 - PM + Scintillator for triggering
 - Infrared laser
 - Radioactive source Sr90

Status of the 2007 beam-test and testbench with source @ Paris

- •Some results of VA1
 - Pedestal subtraction
 - Common noise study
 - Signal to Noise

Status of the 2007 beam-test and testbench with source @ Paris

- Some results of SiTr130-4:
 - Pedestal study (vs channel, sample ...)
 - Signal to noise Vs Channel
 - Signal to noise
 - Linearity

Project

- Testing the SiTr130-88 chips
 - New HPK sensors performance characterization
 - Performance extraction of the new chip SiTr130-88 (more statistics)
 - Alignement system (M. Fernandez Garcia, I. Villa)
- Develop an environnement for modules manufacturing for EUDET collaboration (G.Badet, A.Charpy, G.Daubard, C.Evrard, P.Ghislain, D.Imbault, P.Repain)
 - parameters of HPK sensors: dimension, transparency
 - Front-end electronics
 - Development of toolbox
 - Clean room installation

- Module conception (LPNHE team)
- Modules with two sensors
- Different FEE (chip development)
- Bonding constraints (I.McGill)
- Faraday cage integration
- Alignment study
- Easy and secure handle

•Study for global structure

• Tools conception for "automated" manufacturing

Precise <u>alignment</u> of the different parts of the modules:

- · silicon strips
- · pitch adapter connectivity
- · FEE

Analogical video camera

Suction system with micro metric screw

System tolerance

Perfect integration on the carbon fiber support during the gluing

- Tools conception for "automated" manufacturing
- Keep alignement during the gluing process
- Perfect integration on the carbon fiber support during the gluing

Suction transfert tool

Gluing tool

- Work environement
- Definition of the procedure and the critical point during the assembly
- Installation of the cleanroom and the first module is done

- Work environement
- Definition of the procedure and the critical point during the assembly
- Installation of the cleanroom and the first module is done

- Work environement
- Definition of the procedure and the critical point during the assembly
- Installation of the cleanroom and the first module is done

- Work environement
- Definition of the procedure and the critical point during the assembly
- Installation of the cleanroom and the first module is done

• Faraday cage (I.Villa and V.Saveliev)

Example of configuration:

Data Acquisition System

- Flexible system: work with VA1 chip, SiTr130-88 (A.Comerma, H.PHAM, R.Sefri), and future
- Idea: develop a DAQ, can work in EUDET environnement or on standalone for local test
- Easy upgradable system → FPGA board with USB output/input
- Real tool box to automatize the different study: pedestal, calibration, alignment etc

Data Acquisition System

• Hardware parts

FPGA board with USB connexion (A.Comerma) – VHDL code to manage (M.Dhellot, A.Charpy):

- SiTr-130 and FEE acquisition for tracking
- VA1 acquisition for reference tracking

Data Acquisition System

- Software parts
- Slow control is managed by Labview code (J.F.Huppert)
- DAQ system is written in C++ and using the Root framework (C.Ciobanu, A.Charpy):
 - Set the DAQ system and chip configurations
 - Written the raw data
 - Possibility of on-line monitoring
 - Send the data to EUDET DAQ system if needed

DAQ_HardWare

m_pChipConfig

m_bUsbUnitializationStatus m_bFEEConfigStatus m_bFPGALoadingStatus

m_psDescription

ChipConfiguration

UsbDlg

bool

FT_HANDLE *

m_piFpgalD m_iNumberOfEnabledBoard

m iNumberOfFPGABoard

Data Acquisition System

- Software parts
- DAQ system is written in C++ and using the Root framework (C.Ciobanu, A.Charpy):

m iBufferSize

irstPositionInBuffer

- XML Documentation generated by Doxygen (Activity diagram, time diagram)
- Universal raw data format
- Unified the control command for the DAQ system
- Possibility of on-line monitoring
- Send the data to EUDET DAQ system if needed

Summary

Mechanical status

- Tools are ready to produce the module sensors
- Availability for EUDET collaboration → Need to know new specification for tool customization or if changes is needed

DAQ status

- VHDL and C++ code is under development (will be ready for the next testbeam)
- Next step: SiTr130 management

• Next tasks

- Validation of the DAQ system
- Behaviour study of the electronics and sensors with local tests
- Characterization of the new SiTr130-88 chips \rightarrow beam test @ DESY in March 2009
- Status is available on the following link:

 http://lpnhe-lc.in2p3.fr/internal/Status.html

