

The 2008 SiLC beam test at CERN and some analysis results

Peter Kvasnicka*

IPNP, Charles University, Prague

for the SiLC R&D collaboration

EUDET Meeting, Amsterdam, Oct. 6th 2008

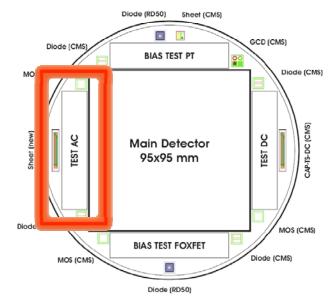
^{*} The presenter is supported by EU I3 contract 026 126-R II3 (EUDET)

Aim of the beam test

Evaluate the best strip geometry of silicon strip sensors with 50 micron pitch to achieve the highest possible spatial resolution

Ingredients:

- Dedicated mini sensor developed by the SiLC collaboration
 - Different zones, each with a different strip geometry
- EUDET pixel telescope
 - to get high precision tracks to determine the residuals for our DUTs
- 120 GeV Pions from CERN SPS


SiLC Sensor Order

SiLC Collaboration ordered at Hamamatsu (HPK):

- 30 pcs single-sided 6" wafer
- 5 pcs. alignment sensors of same layout, but hole for laser in backplane metallization

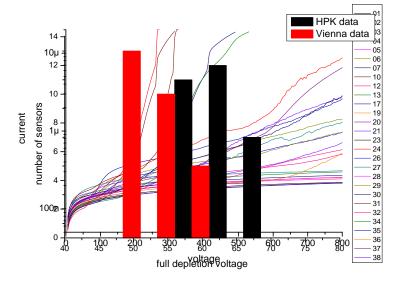
Specifications:

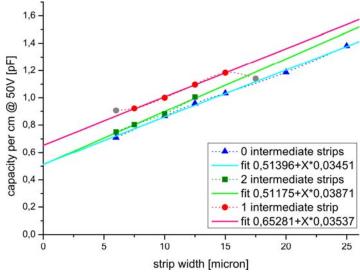
- Wafer thickness : 320 μm
- Depletion voltage around 75V
- 1792 AC-coupled strips, individually biased via poly-Si resistor (20MOhm)
- Strip pitch: 50 μm pitch,
- Strip width: 12.5μm
- No intermediate strips
- Additional test structures around the wafer

Multi-geometry test structure

TEST-AC structures:

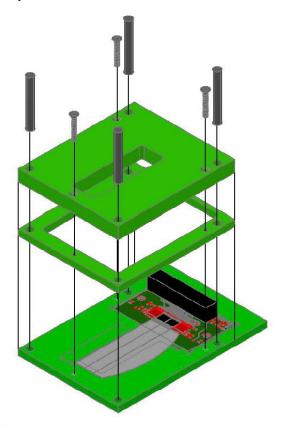
- 256 strips with 50μm pitch
- 3 region with zero, one or two intermediate strips
- Different strip widths
- 16 different zones, each consisting of 16 strips
- Layout constant within each zone
- Strip width and number of intermediate strips vary between the zones
- Idea: Determine best geometry in terms of resolution
- Using a testbeam with highenergy hadrons

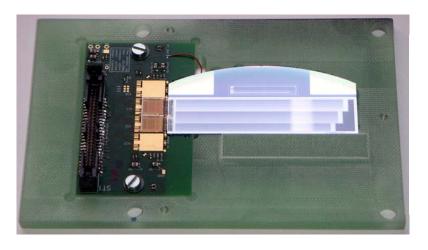

TESTAC:

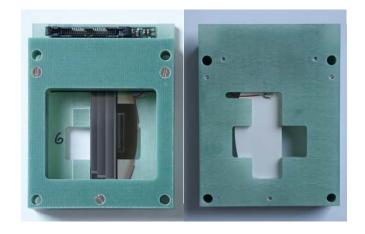

intermediate
strips
no
single
double
double
double
double

Sensor Electrical Characterization

- SiLC sensors and test structures have been intensively tested in Vienna
 - IV curves on all sensors
 - CV curves to determine full depletion voltages (approx 50-65V)
- Measurement of the inter-strip capacitance reveal different values for each zone:
 - Capacitance scales linearly with strip width
 - Different offset for region with one or two intermediate strips

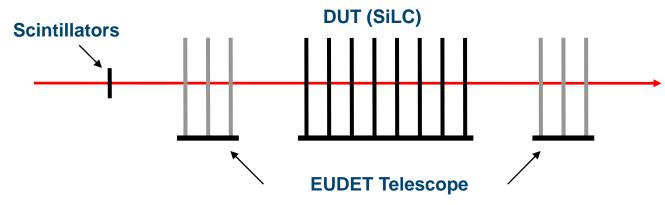





Modules

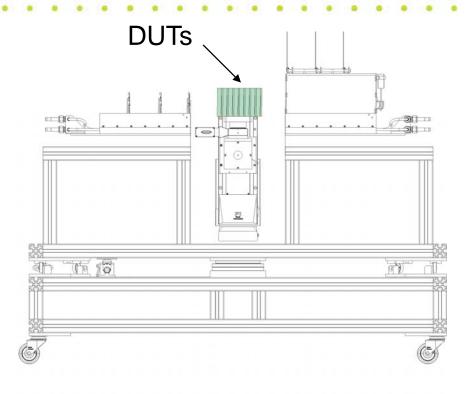
9 modules have been built in Vienna using self-developed hybrid based on APV25 readout chip (similar to CMS Tracker)

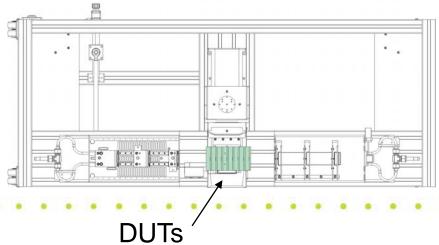

Front side: Back side:



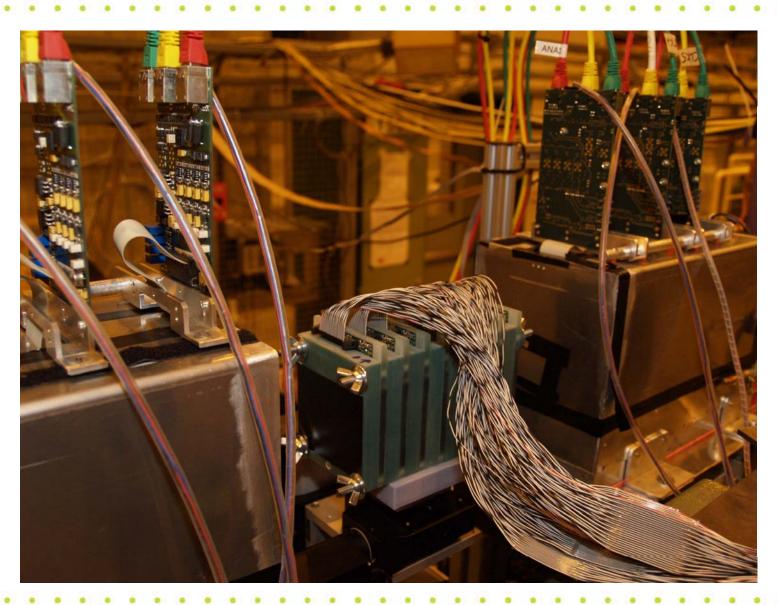
Module Stack

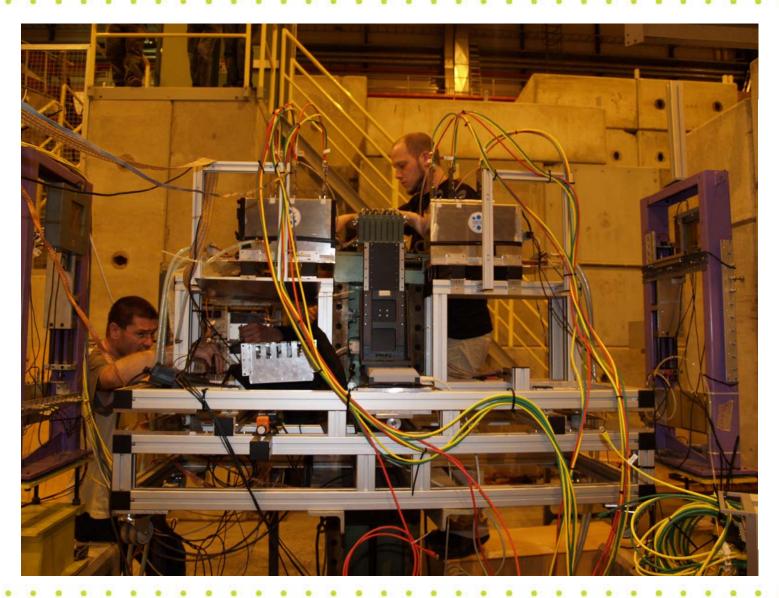
- 8 Modules have been screwed together
- To be mounted in between EUDET telescope
- Stack of 8 modules would allow us autonomous tracking





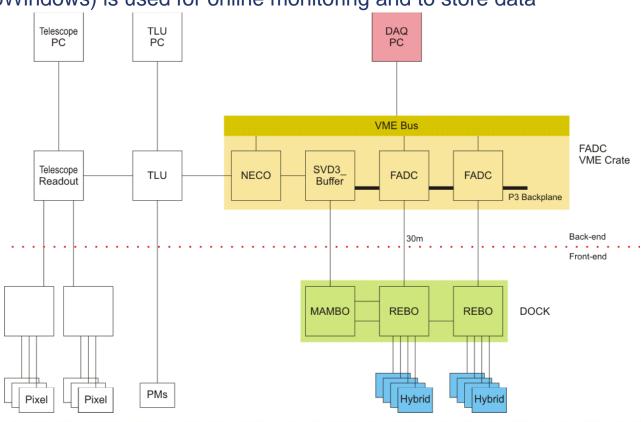
Arrangement on Telescope


- Stack of 8 DUT modules are mounted onto XYZ-stage of telescope by the help of a small adapter table
 - Construction drawings of Telescope support and XYZ table were very helpful in designing this table
 - Everything was installed in H6B aera at CERN (SPS NA Hall)
 - From 30. May to 5. June 2008



Setup (I)

Setup (II)

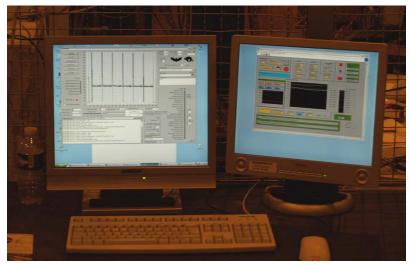


DAQ for the APV25 chip

- Frontend (FE) Hybrids are connected to Repeater Boards (REBO) located in DOCK box
- HV is coming from Keithley Source-meter via small board directly to FE (not shown)
- Two 9U VME Boards with FADCs are reading data and digitalize them
- NECO Board is the controller and distributes clock and trigger (via SVD3_Buffer board)
- PC running CVI (LabWindows) is used for online monitoring and to store data

NECO board has LVDS I/O to directly read trigger and timestamp data from TLU box


(Thanks to David Cussins for providing us a TLU box prior the TB)

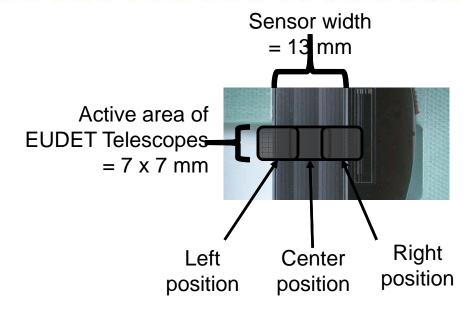


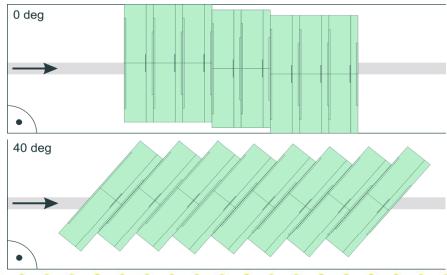
DAQ Hardware and Software

- DAQ Hardware was installed outside of testbeam zone to allow intervention without cutting the beam
 - We had 30m cables between crate and front-end
- Ethernet connection was used to communicate with DAQ from control room
- DAQ Hard- and Software (including predecessors) has already been used for more than 10 test beams in the past.
 - Thus, everything was pretty stable.

List of runs

Resolution runs

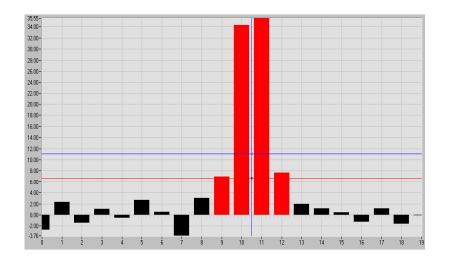

- To be repeated 3 times to cover full area
- Run numbers 2718, 2719, 2720 (each 100k events)

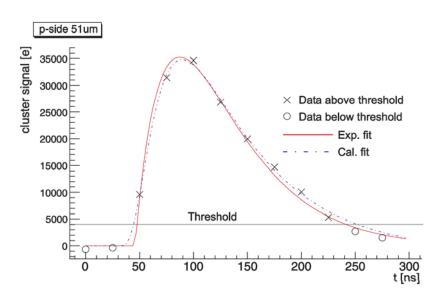

HV Voltage scan

- Between 10 and 100V
- Run# 2787-2828 (10k events each)

Angle scan

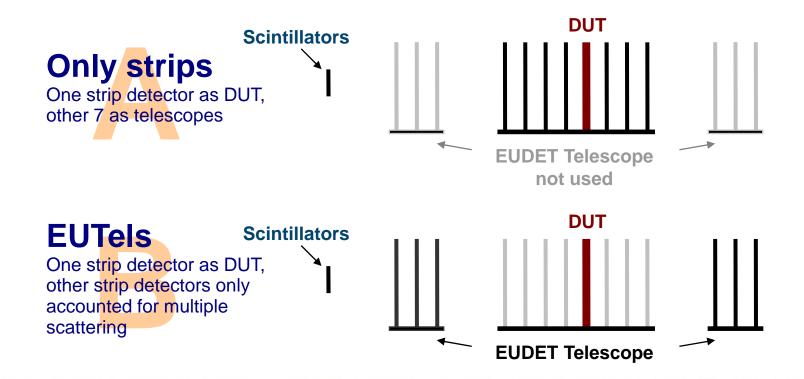
- Between 0 and 60 deg (in steps of 10deg)
- Had to be performed manually since rotational stage of EUDET was not working
- Run 2831-2837 (10k each)


Timing


- SPS Beam structure: 5 seconds particles during slow extraction ("spill"), then pause of 20-40 sec
 - Beam intensity has been reduced by closing collimators in the beam line
- Trigger rates:
 - APVDAQ alone (zero-suppressed): 400Hz (during spill)
 - APVDAQ (raw) + Telescope (ZS): 50Hz (during spill)
 - APVDAQ (raw) alone: 70-75 Hz
 - Telescope (raw): 5 Hz (during spill)
- APV chip has 50ns shaping time
- Delays introduced by cables
- DAQ online monitoring allows easy live adjustment of timing
- Latency was adjusted by both NECO and APV chips to see the triggering particle by APV-DAQ

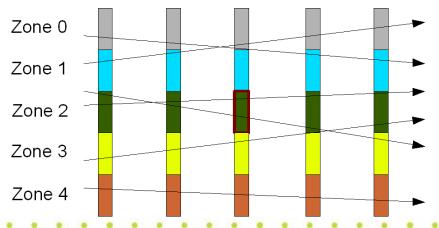
Offline Data Analysis split in two parts

- 1. "low-level" Data analysis of APV DAQ data using Vienna code:
 - Pedestal subtraction
 - Common mode correction
 - Hit finding, Clustering by center-of-gravity (top pic.)
 - Peak time reconstruction (bottom pic.)
- "high level" Tracking and residual calculation



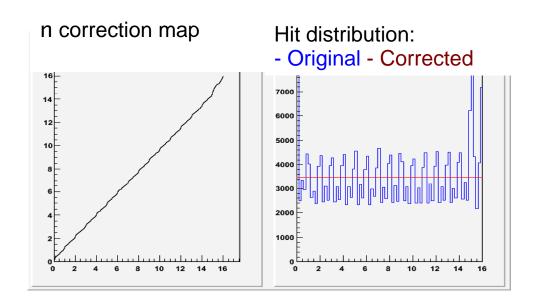
Tracking: Overview

Specific tasks:


- Determine resolutions in individual zones of the sensor to find optimum strip configuration
- Two independent tracking schemes:

Zones on strip detectors

- •16 zones of 16 strips, separated by one missing strip
- Account for / describe positiondependent detector properties
- Must have enough tracks passing through each zone
- •Non-standard properties in border regions between zones. We cannot simply discard tracks passing through boundaries we would lose 98 per cent tracks!



Zono	Strip width	Intermediate		
Zone	[µm]	strips		
1	6	no		
2	10	no		
3	12,5	no		
4	15	no		
5	20	no		
6	25	no		
7	6	single		
8	7,5	single		
9	10	single		
10	12,5	single		
11	15	single		
12	17,5	single		
13	6	double		
14	7,5	double		
15	10	double		
16	12,5	double		

The zone η correction

- •Zone η correction = η for 16 strips (rather than for 1): Calculate displacements so that the distribution of hits over the whole zone becomes uniform.
- •Boundary effects between zones with different strips are handled by the zone eta in a straightforward manner.
- •A simple method relying on the large statistics that we have.

The zone η correction:

Left: The correction map. Right: The original distribution of hits (blue) and distribution of η-corrected hits.

Note that zone boundaries are handled automatically.

Zone resolutions

- •Resolutions were calculated using the Prague DEPFET tracking package.
- •Resolutions are calculated directly (no infinite energy extrapolation) and simultaneously for all detectors.
- •First approximation:
 - Calculate resolutions for zones on detector 3, using tracks going through the respective zone
 - On other detectors, use average resolution
- •Iterate: use zone resolutions from previous step.
- Very small improvement.

The Prague tracking package

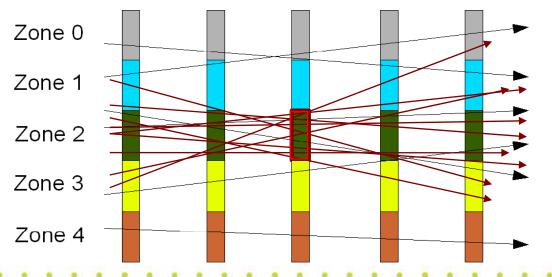
- Package developed for tracking of DEPFET pixels
- A standard analysis chain, comprising
 - i. hit reconstruction
 - ii. track identification
 - iii. detector alignment and track fitting
 - iv. calculation of detector resolutions
 - v. sensibility/reliability study on simulated data

•Features:

- hit alignment based on the Scott and Longuet-Higgins algorithm
- ii. track filter based on PCA
- iii. robust linearized alignment
- iv. direct computation of detector resolutions using a track model that explicitly takes into account multiple scattering
- v. calculation of alignment and resolution errors using bootstrap resampling

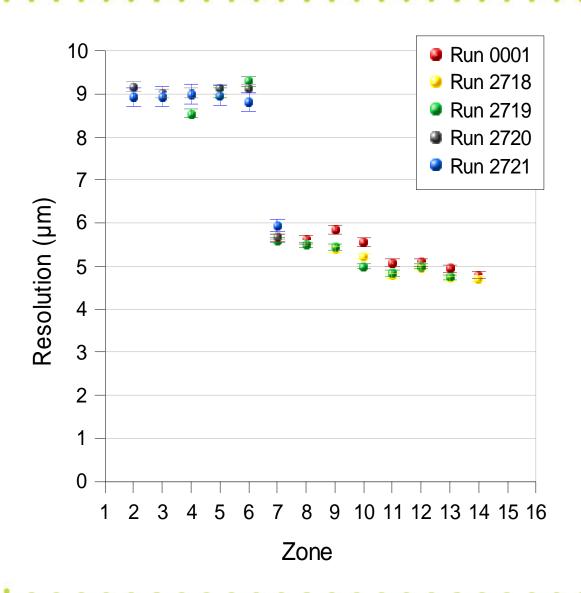
Resolution calculations

- •In detector resolution calculations we decompose track projection errors (fit residuals) into contributions of
 - measurement error (detector resolution)
 - telescope error (error of track projection on the detector)
 - contribution of multiple scattering to telescope error


$$\begin{array}{c} diag^{-1}cov\left(u^{(c)}\right) = \mathbf{M_{\Delta}\cdot\Delta^2} + \mathbf{M_{\Sigma}\cdot\Sigma^2} \\ \text{vector of diagonal elements of the matrix} & \text{covariance matrix of fit residuals} \\ \text{elements of the matrix} & \text{Matrices depending on the method of calculation - whether fits are calculated using the given detector or not} \\ \end{array}$$

 We need a positive solution of the matrix equation, so we use quadratic programming or bootstrap resampling of the residual covariances to assure positivity

Zone resolutions - Overview


- We calculated zone resolutions by using only tracks that passed the required zone on detector 3.
- Each time, resolutions are calculated for all detectors, but we have a "clean" resolution only on detector 3.
- Resolutions on other detectors are "mixed", arising from tracks passing different zones.
- In the following step, the resolutions obtained this way were used on other detectors as appropriate for individual tracks.

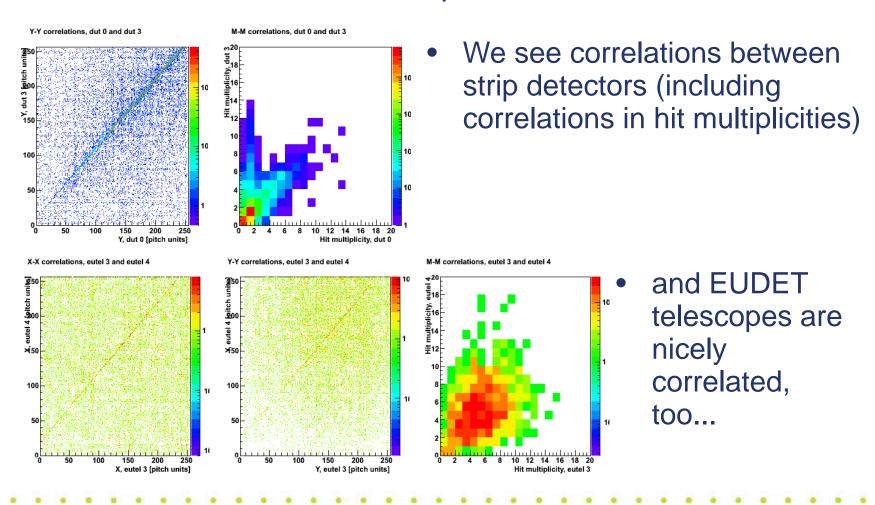
No special treatment for edge zones was used.

Zone resolutions - Results

- We have to combine results of several runs with a different position of the setup relative to the beam) to reach sufficient occupancy over the whole area of the detector.
- Even so, we don't have enough data for edge zones.
- Overlap regions allow to assess the precision of calculated resolutions.

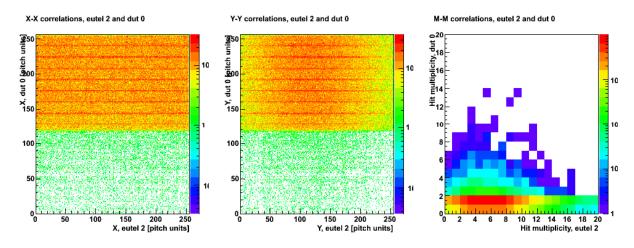
Zone resolutions - Results

Strip width	Intermediate	D 0004	D 0740	D 0740	D 0700	D 0704
[μm]	strips	Run 0001	Run 2718	Run 2719	Run 2720	Run 2721
6	no					
10	no				9.17±0.11	8.93±0.21
12,5	no				9.01±0.10	8.94±0.23
15	no			8.54±0.11	9.02±0.10	8.99±0.21
20	no			9.03±0.10	9.12±0.10	8.97±0.21
25	no			9.29±0.11	9.13±0.10	8.81±0.21
6	single	5.66±0.10		5.60±0.07	5.69±0.07	5.95±0.14
7,5	single	5.61±0.09		5.49±0.06		
10	single	5.85±0.09	5.39±0.07	5.45±0.07		
12,5	single	5.56±0.09	5.23±0.06	5.00±0.06		
15	single	5.08±0.08	4.78±0.05	4.84±0.06		
17,5	single	5.09±0.08	4.97±0.06	5.00±0.06		
6	double	4.95±0.08	4.72±0.05	4.75±0.06		
7,5	double	4.80±0.08	4.70±0.05			
10	double					
12,5	double					


Route B: EUDET telescopes

- EUDET telescopes: provide an independent path to the same results.
- Nearly in all cases, analysis can be carried out using strip detectors alone, or using EUDET telescopes to look at a single strip detector, accounting other strip detectors only for multiple scattering.
- Multiple scattering contributes tenths of microns to measurement errors
- Hit multiplicity is not serious in the data.
- We have rougher hit reconstruction for EUDET telescopes (using the ClusterExtractor macro)
- We need alignment among EUDET telescopes and strips

Route B: EUDET telescopes


• Still in progress: we don't see correlations between strip detectors and EUDET telescopes.

Route B: EUDET telescopes

but no correlations between strips and EUTels.

 This is very preliminary, we still haven't looked at event timestamps.

Summary

- We have performed a test beam to determine the spatial resolution of a mini sensor with different geometric zones using the EUDET telescope as reference
- The testbeam took place at CERN between May, 30th and June 5th, 2008
- SPS performed "reasonable" (some beam outages)
- Trigger was working well thanks to TLU integration during preparation
- Support by EUDET during data taking was excellent (even on weekends and night)
- We see tracks within 8 DUT planes
- We see tracks within the telescope planes
- But, we do not see any correlation between both

Resolution: 9 um with no intermediate strips, 5-6 um with either one or two intermediate strips

Thank you!

Backup slides

Thanks to Emlyn Corrin and Antonio Bulgheroni!

- MAPS sensors are read-out continually, 3 ms per plane
- Trigger works at frame-processing level
- The sensors are not cleared, they discharge spontaneously; therefore, subtraction of consequent frames is used to uncover data that appeared newly
- In each pixel, we see hits accumulated in that pixel since it was previously read, i.e., during the previous 3 milliseconds.
- Frames are temporarily stored in a circular buffer
- The effect of a trigger is that some frame data are stored.

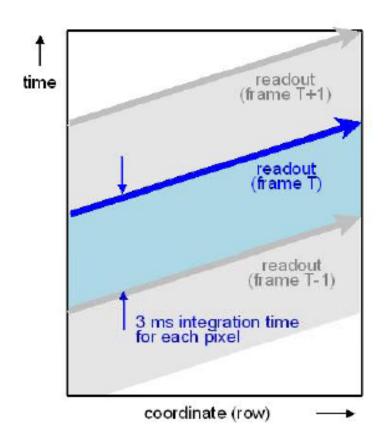


Figure: Time-coordinate representation of the readout process

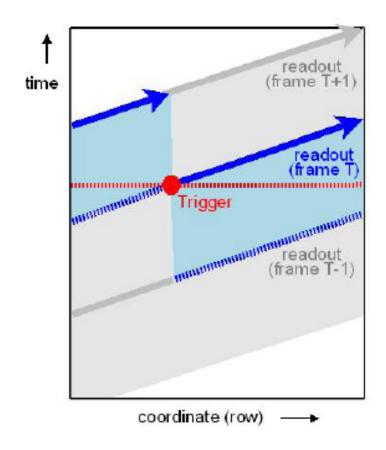


Figure: When a trigger comes, data frame containing the trigger particle si constructed from three consecutive frames and saved.

- The reconstructed data frame almost surely contains the triggering particle
- Incorrect time settings may lead to slight inefficiency of the detector
- In each pixel, we get what hit it within a 3 ms window, but the windows for individual pixels are different.

