

VFCAL Report

W. Lohmann, DESY

Infrastructure for sensor diagnostics & Sensor test facilities at testbeams
FE Electronics
Laser Alignment
Sensor Production

Labs involved: Cracow UST, Cracow INP PAN, Prague (AS), Tel Aviv Univ. DESY (Z.)

Octobre 2008

Current design (Example ILD, 14 mrad):

EUDET worksheet

rward calorimeter					
Silicon sensor production					
icon sensors available					
sign of laser positioning system					
totype of laser positioning system available				*	
evelopment of sensor test facilities					
Sensor test facilities ready				↓	
Development of readout electronics			<u> </u>		
Design of readout electronics available			€		
roduction of readout electronics					
Readout electronics ready				▲	
Test of readout electronics	Year 1	Year 2	Year 3	Ť	
			We	are here	

Infrastructure for Sensor Tests

Testbeam equipment for sensor performance studies using the EUDET telescope

Infrastructure for Sensor Tests

Upgrade of trigger counters and collimators – significant improvement for spectrum measurements using $^{90}{\rm Sr}$ source

Octobre 2008

VIKHEF Amsterdam

Setup for TSC measurements

Diagnostics of sCVD diamond sensors after radiation damage

Octobre 2008

Silicon lab in Tel Aviv

- A dedicated silicon lab is created in Tel Aviv:
- •Computer monitored prob station
- Computer supported I(V), C(V) measurements
- in preparation:
- clean room
- spectroscopic set-up

A dedicated HEP lab building is designed for detector R&D, planned to be ready mid 2009

Developed in AMS 0.35 μm technology, several prototypes of the analog and digital part tested

Octobre 2008

FE Electronics

FE Asic: 8 channles per chip, 4 with MOS feedback resistance, 4 with passive Rf feedback

ADC Asic: Pipeline architecture 10 bit resolution Maximum sampling rate 35 MHz

First prototypes needed improvement, Submission ADC and DAC Sept. 2008 Prototypes expected Nov. 2008

FE Electronics

First successful tests of the analog part with a single pad sensor

NIKHEF Amsterdam

Laser Position Monitoring

Over short distances accuracies reached: Displacements in the x-y plane: +-0.5 μ m Displacements in z direction: +- 1.5 μ m

Octobre 2008

Laser Position Monitoring

Scheme of the readout and monitoring electronics

Dedicated CMOS sensor

Displacement calculations

Octobre 2008

Laser Position Monitoring

Impact of temperature changes

Gradient: $1 \,\mu$ m/⁰C

Long term tests (> 24 hours) Relative distance between the two laser beams

Stable within +- $0.5 \,\mu m$

Octobre 2008

Sensor Production

N-type silicon, p⁺ strips, n⁺ backplane, Crystal Orientation <100> $320 \ \mu m$ thickness $\pm 15 \ \mu m$ Strip pitch: 1800 μm Strip p⁺ width: 1600 μm Strip Al width: 1700 μm

Masks for prototypes ready (Hamamatsu)

Prototype sensors just in the process to be ordered

In parallel: development of the fanout

Summary

Laboratory and beam-test infrastructure is created/improved/completed EUDET memo before end of the year will be used intensively in future
First FE ASICS are produced, tests almost completed, second submission of the ADC done EUDET memo before end of the year EUDET extension will be used for updates/higher complexity
Prototype of a laser positioning monitoring system is built

 Prototype of a laser positioning monitoring system is built, matches the accuracy requirements on small distances EUDET memo before end of the year

VFCAL is 'on schedule'

Test Beam Equipment and sensor tests

Setup used for radiation hardness tests at the SDALINAC accelerator

TU Darmstadt

exit window_ of beam line

collimator (I_{Coll}) -

sensor box (I_{Dia}, T_{Dia}, HV) Faraday cup (I_{FC}, T_{FC})

Completed and more comfortable: more efficient use of the beam

Octobre 2008

Test Beam 2007

- Completion of Diamond sensor tests
- •Test of GaAs sensors
- •Test of rad. Hard Si sensors, delivered by BNL and

Prague

diamond sensor prototype

Octobre 2008