Laser alfgnment system

Status report

Leszek Zawiejski
INP PAN, Cracow

W. Wierba, K. Oliwa, E. Kielar, J. Kotula, INP PAN
W. Slominski, Jagiellonian University

EUDET Annual Meeting 2008, October 6-8, Amsterdam, Holland

LumiCal - luminosity measurement

Counting rate N_{B} of the Bhabha events: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma$
in small forward (Left-Right) LumiCal calorimeter will be used to measure the integrated luminosity: $L=N_{B} / \sigma_{B}$ where σ_{B} is precisely calculated from theory

ILC physics:

the required precision for $\Delta \mathrm{L} / \mathrm{L} \sim \Delta \mathrm{N}_{\mathrm{B}} / \mathrm{N}_{\mathrm{B}}$ should be better than $<10^{-3}$ (at production of $10^{6} \mathrm{~W}^{+} \mathrm{W}^{-}$or $\mathrm{q}^{+} \mathrm{q}^{-} /$year) or $\sim 10^{-4}$ (for Giga Z mode -10^{9} / year)

To fulfil this task it is necessary to build:

- luminosity detector with micrometers precision
- on-line running system (Laser Alignment System, LAS) for precisely measurements the positions of the LumiCal

Limit on LumiCal displacement

Single (Left / Right) LumiCal alignment

$$
\mathrm{W}-3.5 \mathrm{~mm}, \quad \text { Si }-0.32 \mathrm{~mm}
$$

Rinn / Rout (Si) 80/180 mm

Inner radius (Rinn) accuracy: a few $(\sim 4) \mu \mathrm{m}$
θ range $35-84 \mathrm{mrad}$, 64 divisions
$\varphi \quad$ (azimuthal) -

```
48 divisions
```

LumiCal X, Y position with respect to the incoming beam (pipe, PBM, QD0) should be known with accuracy better than $\sim 700 \mu \mathrm{~m}$ (optimal $\sim 100-200 \mu \mathrm{~m}$) (LumiCal's will be centered on outgoing beam)

Outgoing beam

Two LumiCal's (L,R) alignment

Distance between two LumiCal's should be known with accuracy better than $\sim 60-100 \mu \mathrm{~m}$ (14 mrad crossing angle)

MC : displacement of the LumiCal

Mont Carlo : BHLUMI \rightarrow Bhabha events \rightarrow Luminosity $\frac{\Delta L}{L}=\frac{\Delta \sigma}{\sigma} \cong 2 \frac{\Delta \theta}{\theta_{\text {min }}}$
Two crossing angles for beams : 0 and 20 mrad ($\mathrm{RDR}-14 \mathrm{mrad}$)
LumiCal displacement relative to IP, detector axis or outgoing beam
$\Delta Z: 50 \mu \mathrm{~m}$ steps for Z in range $(-300,300) \mu \mathrm{m}$

$\Delta \mathrm{X}: 50 \mu \mathrm{~m}$ for (X, Y) in range $(0 ., 300) \mu \mathrm{m}$

Value $\sim 100 \mu \mathrm{~m}$ of the displacement \rightarrow acceptable changes in luminosity measurement The similar conclusion from other MC studies :
A. Stahl , LC-DET-2005-004,
R. Ingbir or A. Sapronov, talks given at FCAL meetings

MC : the internal structure deformation

Changes in X, Y and Z positions of the Tungsten and Si sensors layers
ideal

and in X, Y directions

Possible systematic effect: one order smaller in comparison to possible displacement the Lumical detector as whole but still should be treated carefully as possible significant contribution to total error in luminosity calculation

LAS - method

LAS : laboratory setup

Previous - one laser beam with mirror

Present - two laser beams

- BW camera DX1-1394a from Kappa company 640×480 with Sony ICX424AL sensor $7.4 \mu \mathrm{~m} \times 7.4 \mu \mathrm{~m}$ unit cell size
- Laser modules LDM635/1LT from Roithner Lasertechnik
- ThorLabs $1 / 2$ " travel translation stage MT3 with micrometers (smallest div. $10 \mu \mathrm{~m}$)
- Neutral density filters ND2
- Renishaw RG24 optical heads ($0,1 \mu \mathrm{~m}$ resolution) to control movement of the camera
- Half transparent mirror
- New support for mirrors and filters

Results of $X \& Z$ position measurements

X, Z displacement measurement relative to reference system
$X_{\text {cal }}$ and $Z_{\text {cal }}$ positions - from improved algorithm for centre beam spot determination.

$$
\begin{aligned}
& \sigma x=\text { Xcal }- \text { Xtrue } \\
& \text { displacement }(\mu \mathrm{m}): \pm 0.5 \mu \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma z=\text { Zcal }- \text { Ztrue } \\
& \text { displacement }(\mu \mathrm{m}): \pm 1.5 \mu \mathrm{~m}
\end{aligned}
$$

- Camera was translated in steps of $50 \mu \mathrm{~m}$.
- The distances Xtrue and Ztrue was measured with Renishaw RG-24 optical head with the resolution of $\pm 0.1 \mu \mathrm{~m}$

Stability - temperature dependence

The temperature dependence of the beam spots position in CCD camera: heating or cooling down environment of the laser system.

- Insulated heating box.
- For each temperature point, the mean position of the spot centers from multiple measurements were calculated using improved algorithm

Cooling down - measurement for each 5 minutes Over the $\Delta \mathrm{T}=5.2^{\circ} \mathrm{C}$. Position calculated from algorithm

45 degree beam

Perpendicular beam

The observed changes are on the level $\sim 1 \mu \mathrm{~m} / 1^{\circ} \mathrm{C}$

Temperature stabilization

>8 hours measurements: temperature changes within $\Delta T \sim 0.1$ degree

The relative distance between laser beams

The observed changes in calculated X, Y spots positions are on the level $0.5 \mu \mathrm{~m}$.
Contribution from other effects: nature of laser spot and systematic uncertainties in used algorithm
It is necessary to stabilize the temperature of camera

Further work on LAS

Readout electronics for dedicated silicon sensor, automatic (online) position calculations, a compact shape of the system

Printed circuit board (PCB) is ready.

Start of the readout test of the chain

Left - Right LumiCal alignment inside ILD

- Laser beams (at leat 6 for space orientation) inside 'carbon' support tube - pipes with small diameter \sim a few $(10-15) \mathrm{mm}$
- System with interferometers

In the framework of ILD detector, LAS can base on measured distances to:

QD0

Accuracy in reflective laser distance
measurement $\sim 1.0 \mu \mathrm{~m}$

Beam pipe

Beam pipe (measured in lab before installing, temperature and tension sensors for corrections) with installed BPM

LAS - toward an integrated system

A possible solution: LAS for Si detector (VXD) and LumiCal using Frequency Scanned Interferometers (FSI) and optical fibres

Laser beams grid with several hundred point-to-point distances which should be measure

Displacement measurement of individual sensor layers

> Transparent position sensors :

One laser beam lighting or individual system for each sensor plane

Spanned wire going through the holes in sensor planes working as antena and pickup electrodes to measure the position

- Active during time slots between trains
- Possible interferences
- Accuracy up to $\sim 0,5 \mu \mathrm{~m}$
- Quite simple electronics
- Need 4 coax cables for each plane

Summary

- LAS is very challenging project in respect to the requirements: precisely positioned Si sensors (inner radius accuracy < $\sim 4 \mu \mathrm{~m}$), X \& Y alignment with respect to the beam < ~700 $\mu \mathrm{m}$, distance between Calorimeters $<\sim 100 \mu \mathrm{~m}$, tilts $<\sim 10 \mathrm{mrad}$
- The current laboratory prototype :
> the accuracy in position measurements are on the level $\pm 0.5 \mu \mathrm{~m}$ in X, Y and $\pm 1 \mu \mathrm{~m}$ in Z direction
$>$ thermal stability of the prototype is $\sim 0.5 \mu \mathrm{~m} /{ }^{\circ} \mathrm{C}$
- The technical design required knowledge on final ILD geometry
- More work is ongoing on the system development:
> alignment of both parts of LumiCal, studies on integrated LAS inside ILD
$>$ positions of the internal sensor layers,
$>$ the more compact prototype,
$>$ readout electronics for dedicated sensors and automatic position calculations
- Monte Carlo base estimation the uncertainties of the considered opto-geometrical LA system

