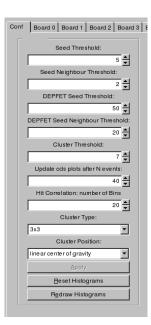
Update of the EUDAQ RootMonitor

Jörg Behr (Hamburg University / DESY)

EUDET Annual Meeting Amsterdam, October 2008

Outline:

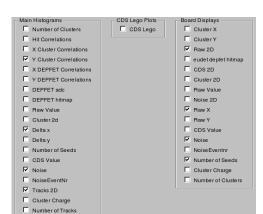
- General New Implementations
- GUI Modifications
- New Plots
- OUT Integration
- Summary & Outlook


General New Implementations

Added Reconstruction Algorithms

- $5 \otimes 5$ cluster reconstruction (old version: $3 \otimes 3$ cluster)
- addition of a neighbour threshold cut
- cluster position determined with linear centre of gravity (old version: seed position)
- different sensor types (sizes) can be mixed in the telescope
 - possibility to specify sensor types (MIMOSA18, MIMOTEL,
 in a configuration file, that will be read during start up
 - reconstruction algorithms and histogram ranges were adapted!

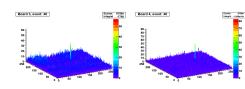
GUI Modifications (1/2)

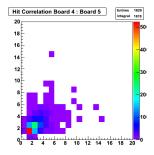

- configuration tab was added to the GUI
- possible to change online reconstruction parameters:
 - seed signal threshold (S/N)
 - 2 neighbour signal threshold (S/N)
 - 3 cluster signal threshold (S/N)
 - Cluster size
- possibility to choose different algorithms for cluster position reconstruction
- reset and redraw all histograms button

GUI Modifications (2/2)

- each histogram is linked to one or more pads
- pads can be disabled and enabled online with check boxes
- histograms belonging to disabled pads are filled in the background (information is not lost after disabling)

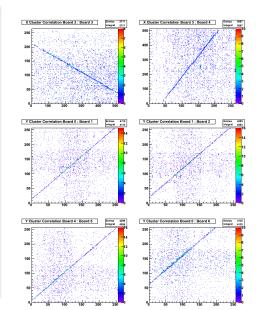
- performance of online monitor increases if all unneeded pads are disabled!
- canvases are updated and divided dynamically depending on the number of enabled pads

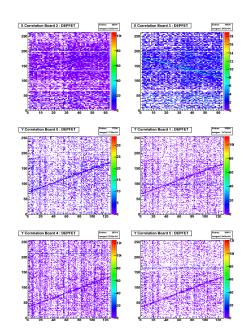



New Plots (1/2)

 surface plot for the cds values (event-by-event) for each board

Hit Correlations


- data with very high hit multiplicity and large multiple scattering (e.g. Cadarache data) ⇒ no online track reconstruction possible
 - → correlation between number of hits in each plane
 - number of bins can be adjusted online


New Plots (2/2)

- correlation between cluster positions in X and Y direction between neighbour boards and between first and last board
- correlation can be seen as a straight line
- variation from a diagonal line can be interpreted as mis-alignment
- helpful to place the telescope into the beam
- the plots show correlation between telescope and Mimosa18 as DUT

DUT Integration

- sensor decoding of DEPFET was implemented in the online monitor
- cluster reconstruction using the DEPFET sensor
- possible to see directly correlations between the telescope and the DEPFET DUT
 - test was successful at the PS and SPS test beams

Summary

- several improvements of the online event reconstruction have been implemented in the online monitor
- the graphical user interface was modified and the handling improved
- significant performance improvements were obtained
- new plots were implemented in order to make the data taking more comfortable

Outlook

- stability improvements are needed!
- time dependent plots in order to check telescope stability during test beam (noise vs time already implemented)