

CALICE vs. Geant4

Calice Data for Optimizing Hadron Shower Simulations

Niels Meyer, DESY EUDET 2008, Amsterdam October 6, 2008

Particle Flow Calorimetry

- SiW Ecal $24X_0 / 1\lambda$
- Tile Hcal
 4.5 λ / 35 X₀
- Tail catcher

Combined Test Beam

Data recorded:

- 2006 DESY/CERN
- 2007 CERN
- 2008 Fermilab MTBF
- Si-W ECAL, HCAL, TCMT
- e[±] 1-50 GeV
- μ^{\pm} (mainly for calibration)
- π^{\pm} 2-180 GeV
- Various impact points
- Angles of incidence:
 - 0[±], 20[±], 30[±], 45[±]
- Typically ~200K events per configuration.

SiW EM Calorimeter

- 3x10 layers with 0.4, 0.8, and 1.2 X₀ tungsten
- 9 wavers/layer with 36 pads of 1x1cm² each
- Challenge:
 - Correlation and leakage effects from guard ring around wavers

Wafers Si with 6×6 pads (10×10 mm²)

SciFe Had Calorimeter

- 38 layers, 2cm steel
- 216 or 141 cells/layer 3x3cm² to 12x12cm²
- Readout via SiPM
- Challenge:
 - T-dependence of gain and amplitude
 - SiPM non-linearity

SciFe Tail Catcher

- 20 strips 5x100 cm²
- Readout via SiPM (same as Hcal)
- 16 layers, alternating orientation
- Two samplings: 1xHcal and 3xHcal

Electrons/Positrons

Niels Meyer -- CALICE vs. Geant4 -- EUDET 2008, Amsterdam -- Oct. 6, 2008

SiW ECal: Gap Effects

- •Gaussian parametrisation of energy loss
- •Permits a reasonable uniformity vs (x,y)
- •Reduces low tail in measured energy
- But inevitable penalty in resolution.

•Data (dashed) agree quite well with Monte Carlo expectation (solid).

•Some shift – likely associated with upstream material and preshowering.

EM Showers in Hcal

Average corrections for temperature and saturation effects necessary to reproduce simulation

<5% non-linearity at highest energy density

No calibration uncertainties in digitization, yet

Lower Scale Comparison

Pions

Niels Meyer -- CALICE vs. Geant4 -- EUDET 2008, Amsterdam -- Oct. 6, 2008

Pion Showers in Hcal

Initial study using QGSP_BERT and LHEP, largest deviation in energy sum A word of caution: More illustrative than conclusive: incomplete instrumentation; most recent calibration not included

Topological Studies

Niels Meyer -- CALICE vs. Geant4 -- EUDET 2008, Amsterdam -- Oct. 6, 2008

12

λ

12

λ

Birks Law

Saturation effect in scintillator at high ionization densities, reduces significantly number of neutron hits. Also total energy deposition reduced, reduces difference between QGSP_BERT and LHEP

Clearly interested in 'released' Geant4 with Birks Law

Where to Look?

intries1402133

Aean 24.93

intries167984

20.3

26.56

20.85

90 100

26.40

2449

MC only, compare LHEP with LCPhys

30 40 50 60 70 80

10 20 30 40 50 60 70 80

 10^{4}

10³

0

200 100 00 70 10 20 30 40 50 60 80 90

50

0

10 20

Conclusions

- CALICE has recorded millions of single particle showers in combined setup of ECal, HCal and TCMT prototypes with unprecedented granularity
- Detector understanding approaches per-cent level, becoming ready for conclusive data/MC comparisons and validation of hadronic shower simulation
- Set of promising/sensitive variables to distinguish different shower models would be very helpful

Backup

ECAL – noise and gain

- •Gain calibrated with muons. Rather uniform channel to channel.
- •Average noise ~6 MIPs. Signal/Noise ~8.
- •With a typical threshold cut for analysis of ~ 0.6 MIP, the effect of noise on the MIP peak is small. We include in simulation, but the effect is minimal for most purposes.

D. Ward, ILD Meeting, Cambridge

HCal Calibration

Lightyield: MIP response on the SiPM scale [pixel/MIP]

SiPM Saturation

Response curves measured on bare SiPM on test-bench

In-situ tests show lower maximum amplitude (SiPM not fully illuminated)

In-situ response not normalizable to photon intensity over full dynamic range \Rightarrow use test-bench curve and scale by ratio of saturation levels

SciW EM Calorimeter

- Full size prototype (18x18 cm)
- Extruded strip technology
- Just entered MTBT test beam at FNAL in September 2008 (replaces SiW ECal), campaign successfully concluded last week