# **DAQ Hardware Status**

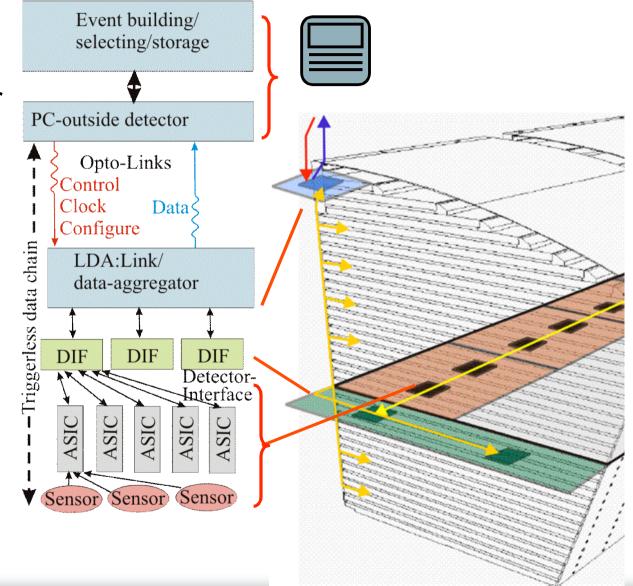
#### Valeria Bartsch

Veronique Boisvert Maurice Goodrick, Barry Green, Bart Hommels, Marc Kelly, Andrzej Misiejuk, Vishal Panchal, Martin Postranecky, Matthew Warren, Matthew Wing, Tao Wu





## DAQ architecture


DAQ software

Off Detector Receiver (ODR)

Link Data Aggregator (LDA)

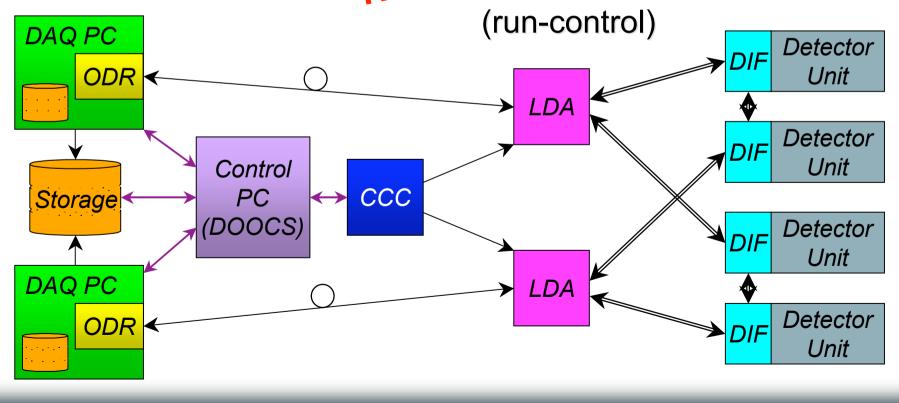
Detector Interface (DIF)

**Detector Unit** 



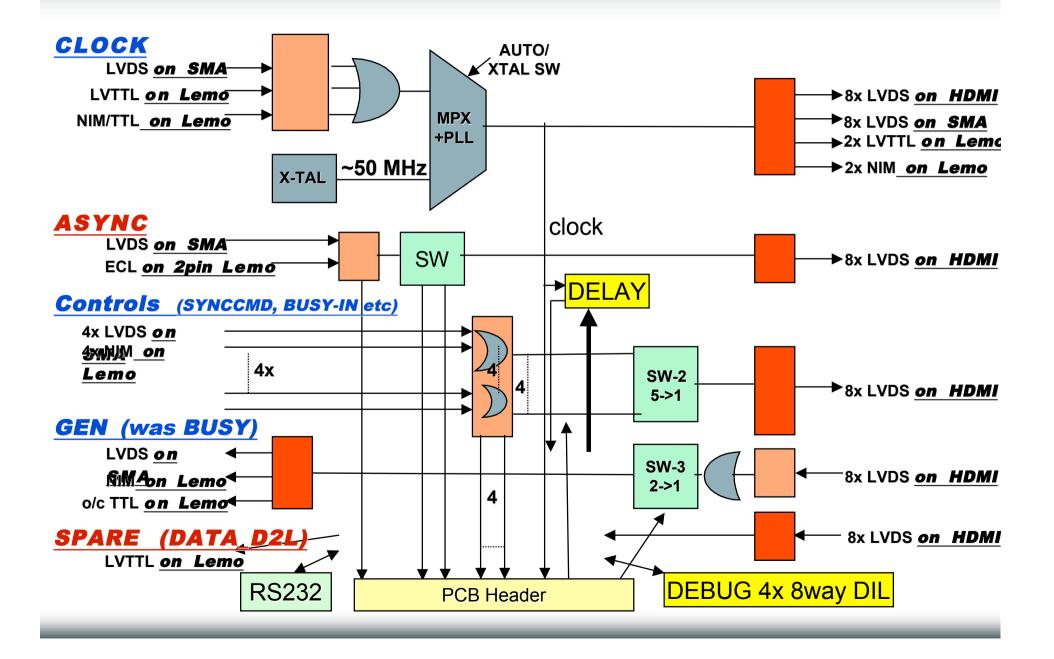
**UC** 

## DAQ architecture


**Detector Unit:** ASICs

**DIF:** Detector InterFace connects Generic DAQ and services

LDA: Link/Data Aggregator – fanout/in DIFs and drives link to ODR **ODR:** Off Detector Receiver – PC interface for system.


**NEW CCC:** Clock & Control Card: nout/in Fanout to ODRs (or LDAs)

#### NEW! CONTROL PC: DOOCS GUI



**UCL** 

# Clock: Detailed Overview Schematic



# **CCC Link Signals**



Uses same HDMI cable and signal types/direction

#### • CLOCK

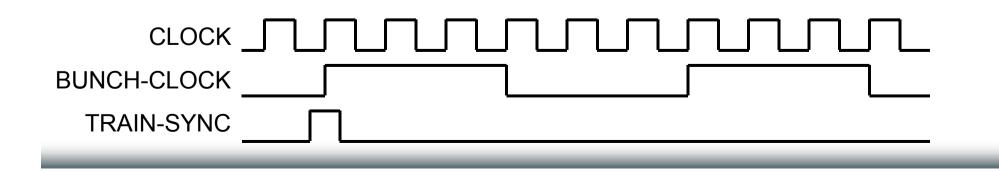
– Machine clock (50-100MHz)

#### • TRAINSYNC\_OUT

- -Synchronisation of all the front-end slow clocks.
- An external signal will be synchronized with/to CLOCK, phase adjusted and transmitted as a single clock-period wide pulse to the LDA.
- To allow communicating with a stand-alone DIF, the CCC board can be configured to send the LDA 8b/10b serialised command for train-sync.

#### • FAST\_OUT

- -Transfer asynchronous triggers as fast as possible.
- -In AUTO mode, used to Transfer BUSY to detector (toggle = level)


#### • FAST\_IN

- Used by DIFs (via LDA) signal to "stop acquisition" when needed.
- Due to AC coupling the busy must asserted by constantly toggling this line.

| 1 | CCC HDMI Signals |               |                         |
|---|------------------|---------------|-------------------------|
|   | CLink Signal     | CCC Signal    | Function                |
|   | CLOCK_L2D        | CLOCK_OUT     | Clock                   |
|   | DATA_L2D         | TRAINSYNC_OUT | Trainsync signal output |
|   | DATA_D2L         | Unused        | Unused                  |
| ) | ASYNC_L2D        | FAST_OUT      | Asynchronous signal     |
|   | GEN_D2L          | FAST_IN       | Busy                    |

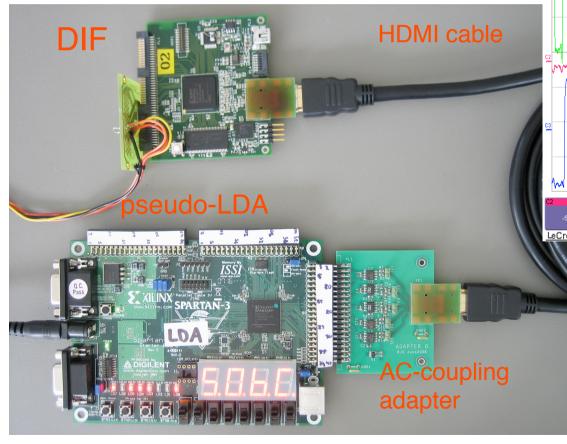
## **Clock: Timing Overview**

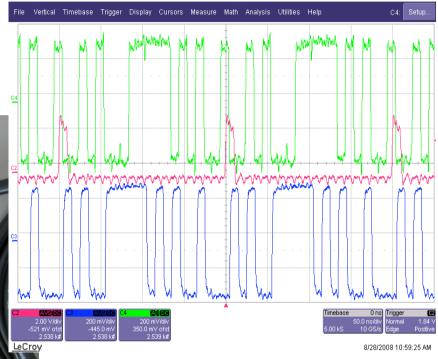
- Presume machine CLOCK period < bunch-period
  - -Expected to be 50-100MHz, local or machine.
  - -Common fanned-out to the detector
- BUNCH-CLOCK (slow clock) derived as CLOCK/n
  - -Re-produced locally on DIF (with TRAINSYNC & counter)
- Start of train signal (TRAINSYNC) synchronises bunchclocks on all DIFs.
  - –Requires fixed-latency signal a SYNCCMD.
  - -TRAINSYNC "qualifies" CLOCK edge



### **Clock: Status/Schedule**







- Schematic DONE
- •Layout **DONE**
- Manufacture DONE
  - Testing to be started
  - Run of 2 with 8 more when satisfied working
- Firmware development: TO BE STARTED

## **DIF -LDA link testing**



- Link shows signs of life.
  - pseudo-LDA sends CLK & 8B/10B data @ 100MHz over ACcoupled LVDS on HDMI cables





data loop-back in firmware stable

## DIF: Status (generic) and Plans

#### UNIVERSITY OF CAMBRIDGE

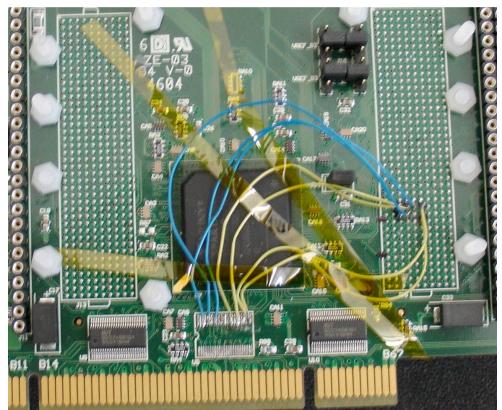
- Test hardware: DONE
- Firmware development:
  STARTED
  - LDA Link integration

#### ECAL DIF prototype: 65x72mm, 8 layers

- 1. JTAG programming header
- 2. LDA link HMDI connector
- 3. DIF link connector
- 4. mini-USB connector
- 5. Xilinx PROM
- 6. Cypress 2MB 10ns SRAM
- 7. Xilinx Spartan3-1000 FPGA
- 8. FDTI FT245R USB controller
- 9. 20p user header connector
- 10. reset pushbutton
- 11. 90pin SAMTEC IB connector

#### e.g: ECAL DIF




- 2 DIFs produced, parts available for 10 more.
- DIF hardware is (at least partly) functional

## LDA-ODR Connectivity

Prototype LDA has hardware problems

- Mainly incorrect signals routed on PCB to Eth add-on
- LDA has been modified to attempt fix (see pic!)
- Ethernet RX OK, auto-negotiation starts OK. BUT ..
- Ethernet TX appears corrupt
- random glitches and/or clock recovery problems
- PHY in loop-back OK, so looks like the SERDES
- Investigating ...

•SOME GOOD NEWS: ODR-LDA protocol almost finalised



MANCHESTER

## LDA-DIF Connectivity

- •Current boards have 8 working HDMI links
  - Option for 10 on future boards with simple change of FPGA
- •FPGA is basically used as an LVDS transceiver and clock fanout, although it will probably also handle the separate prompt/fast signals to/from the DIF
- •Link documentation is proceeding, large amounts have been already done





#### New LDA Base Board

- Enterpoint is designing a replacement board for the BroadDown2 known as the Mulldonoch2
  - Extra I/O capabilities
  - EBX format board
  - PCI connector is replaced by a PC104 connector

MANCHESTER

- SDRAM onboard
- SPI flash ram
- Better power system
- Prototype production is expected sometime this month.
- Is not designed for us especially, but rather is a generic board Enterpoint had planned already. Design time table got shifted when we found the error in the existing BD2 design
- A corrected BroadDown2 design is also going to be available in roughly the same time frame

## **ODR: Hardware/Firmware**

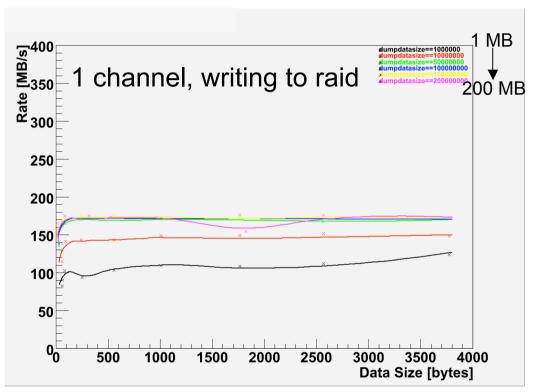
**UCL** 

#### • ODR: WORKING

- -Receive data on 4x fibre (RX),
- –Write to disk FAST (250MB)
- -Send data up fibre (TX)
- -Controlled from Linux driver

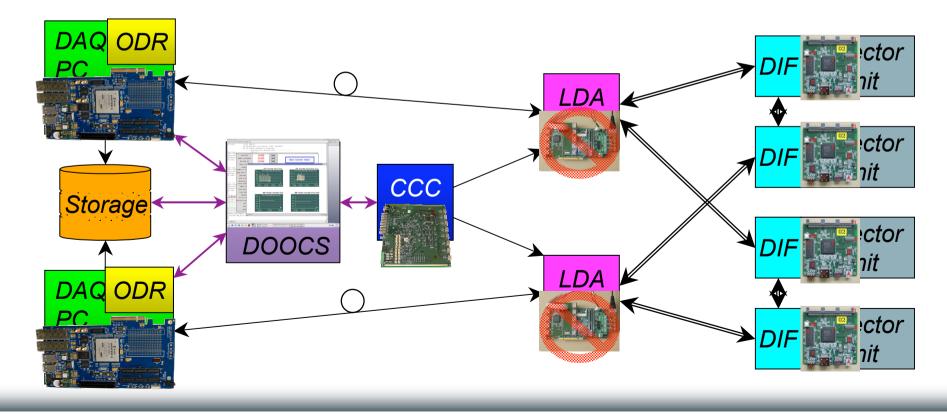


- Future upgrade: Decode event header from LDA
  - -Provides on-line info
  - -Can deal with control messages from LDA
  - -Allows host to write to disk without processing


# ODR: Rate performance optimization

(from ODR to disk)

Royal Holloway University of London


Several factors to optimize:

- Architecture of the host (hyperthreading, raid array disks, kernel version, etc)
- Number of DMA buffers
  - currently using 950
- Number of buffers to fill before dumping the data to disk
  - best to have about N DMA buffers - 200 (so 750 for 950 DMA buffers)
- Size of files to write (grouping of data files)
  - Called dumpdatasize on plot
  - Dominant factor
  - chose 100 MB



## **DAQ** status

- Overall status: all components exist, firmware needs to be developed
- LDA needs a respin, new board to arrive Mid-October (holds up integration of all other components to a testbench)
- CCC board has been delivered and will be tested soon

