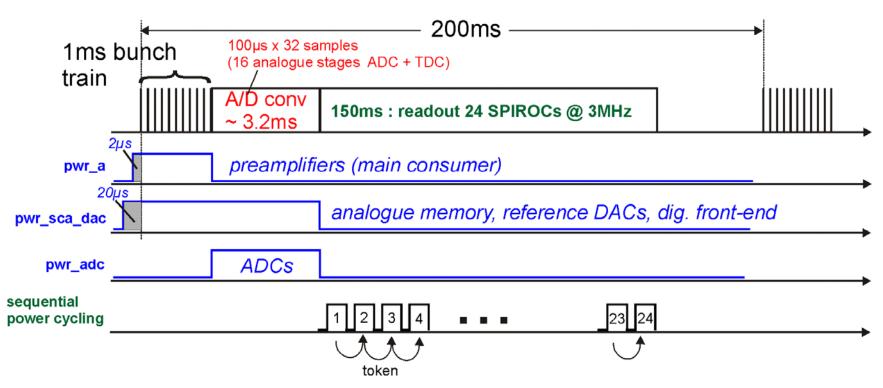


AHCAL Power Aspects

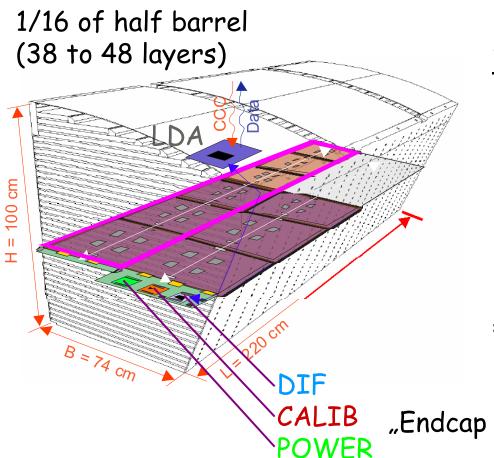
P. Göttlicher, M. Reinecke, H.-J. Wentzlaff

for the AHCAL developers



EUDET Annual Meeting 2008 – NIKHEF

AHCAL switch-on time



ILC bunch train rate: 5Hz

```
SPIROC: Main consumer is preamplifier!
=> good approx.: AHCAL switch-on time = ~2ms (1%)
```


AHCAL: In-Detector Power

Typical AHCAL layer:

 $P_{ASIC} = 25\mu$ W/chn (1% on-time) $P_{SiPM} = 50V^*0.3\mu A = 15\mu W/chn$ $P_{LCS} = 2\mu W/chn$ (rather vague)

 $N_{chn} = 2592$ (in 3 full slabs)

=> P_{laver} = ~110mW (1% on-time)

"Endcap Power"

This does not seem to be much, but the power is "trapped" inside layer (i.e. no "air-flow").

AHCAL: Endcap Power 1%

AHCAL input voltages: +6V, +12V, +60V (SiPM bias)

Nr	Baugruppe BG	Anz.	Applikation -Bez.		aus ext. U _e	Uout1	U _{out2}	lout	l _{out}	Abfall U _{regler}	Abfall U _{regler}	Verlust P _{Regler}	P _{Nutz}	P _{Quelle}
					[V]	[V]	[V]	[mA]	[mA]	[V]	[V]	[W]	[W]	[W]
	SLAB													
1		1	VDDA	LP3876ES-ADJ	6,0	3,5		11		2,50		0,0275	0,039	0,066
2		1	VDDD	LP3876ES-ADJ	6,0	3,5		7		2,50		0,0175	0,025	0,042
3		1	VDAC	LP3874ES-ADJ	6,0	5,0		1		1,00		0,001	0,005	0,006
4		1	VREF	REF194ESZ	6,0	4,5		1		1,50		0,0015	0,005	0,006
5	10V/50V	1	HV1	LT3010EMS8E	60,0	10,0	50,0	4	4,00	50,00	10,00	0,2	0,04	0,24
6	10V/50V	1	HV2	LT3010EMS8E	60,0	10,0	50,0	0	0,00	50,00	10,00	0	0	0
7	10V/50V	1	HV3	LT3010EMS8E	60,0	10,0	50,0	0	0,00	50,00	10,00	0	0	0
	CALIB			***						Sums		0,2475	0,113	0,36
8		1	VCAL11	LT1763CDE	12,0	11,0		20		1,00		0,02	0,22	0,24
9	3,5Volt?	1	VCAL3V3	LT1763CDE	6,0	3,3		300		2,70		0,81	0,99	1,8
	DIF									Sums		0,83	1,21	2,04
10	3,5Volt	1	VDIF3V3	LT1763CDE	6,0	3,3		400		2,70		1,08	1,32	2,4
11		1	VDIF2V5	LT1763CDE	6,0	2,5		100		3,50		0,35	0,25	0,6
12		1	VDIF1V2	LT3021EDH-1.2	6,0	1,2		100		4,80		0,48	0,12	0,6
	POWER								-	Sums		1,91	1,69	3,6
13	3,5Volt	1	VPWR3V3	LT1763CDE	6,0	3,3		500		2,70		1,35	1,65	3
14	AD1	1	VPREF	REF196GSZ	6,0	3,3		10		2,70		0,027	0,033	0,06
15	AD2	1	VPREF	REF196GSZ	6,0	3,3		10		2,70		0,027	0,033	0,06
16	AD3	1	VPREF	REF196GSZ	6,0	3,3		10		2,70		0,027	0,033	0,06
17	AD4	1	VPREF	REF196GSZ	6,0	3,3		10		2,70		0,027	0,033	0,06
18	AlleADs	1	VPREF	REF192GSZ	6,0	3,3		10		2,70		0,027	0,033	0,06
										Sums		1,485	1,815	3,3
									Total Pow	/er		4,4725	4,83	9,30

By H. Wentzlaff

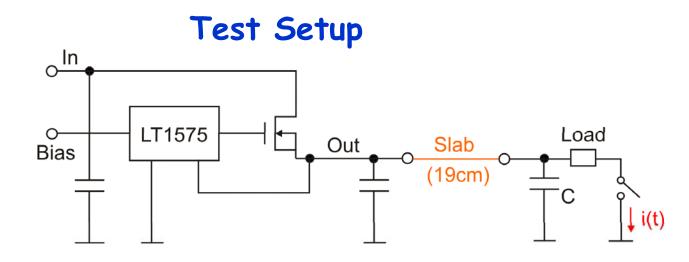
Total Power of 1 AHCAL layer @ 1% switch-on time

EUDET Annual Meeting 2008 – NIKHEF

AHCAL voltages: +6V, +12V (calibration system), +60V (SiPM bias)

1% duty cycle (typical layer):

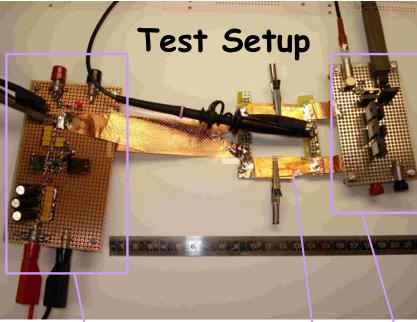
 $\begin{array}{l} \mathsf{P}_{\mathsf{total, layer}} = 9.3W \ (effective \ \mathsf{power} \ (\mathbf{ep}) + \ \mathsf{power} \ \mathsf{dissipation}) \\ \mathsf{P}_{\mathsf{3slabs}} = 113mW \ (\mathsf{in-detector}, \ \mathsf{ep}) \\ \mathsf{P}_{\mathsf{calib}} = 1.2W \ (\mathsf{ep}) \\ \mathsf{P}_{\mathsf{dif}} = 1.7W \ (\mathsf{ep}) \\ \mathsf{I}_{\mathsf{3slabs}} = 1.85A \ (\mathsf{current \ into \ detector \ when \ on-likelihood \ understand \ understan$


100% duty cycle (typical layer):

 $\begin{array}{l} \mathsf{P}_{\mathsf{total},\,\mathsf{layer}} = 21 \mathsf{W} \;(\mathsf{effective \; power}\;(\mathbf{ep}) + \mathsf{power}\;\mathsf{dissipation}) \\ \mathsf{P}_{\mathsf{3slabs}} = 6.84 \mathsf{W} \;(\mathsf{in-detector},\,\mathsf{ep}) \\ \mathsf{P}_{\mathsf{calib}} = 1.2 \mathsf{W}\;(\mathsf{ep}) \\ \mathsf{P}_{\mathsf{dif}} = 1.7 \mathsf{W}\;(\mathsf{ep}) \quad \mathbf{I}_{\mathsf{3slabs}} = 1.85 \mathsf{A} \;(\mathsf{current\; into\; detector}, \\ \mathsf{P}_{\mathsf{power}} = 1.8 \mathsf{W}\;(\mathsf{ep}) \quad \mathbf{I}_{\mathsf{00\%}} \;\mathsf{of\; the\; time}) \end{array}$

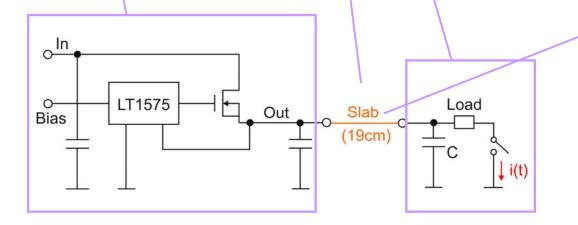
Detector electronics (Load) is switched between "off" (no current) and "on" (full current) with 1% duty cycle.

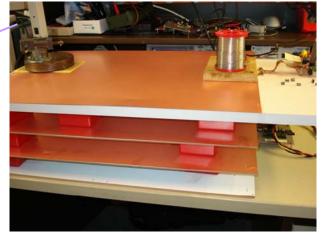
=> Oscillations on 2.20m-long power-ground system?

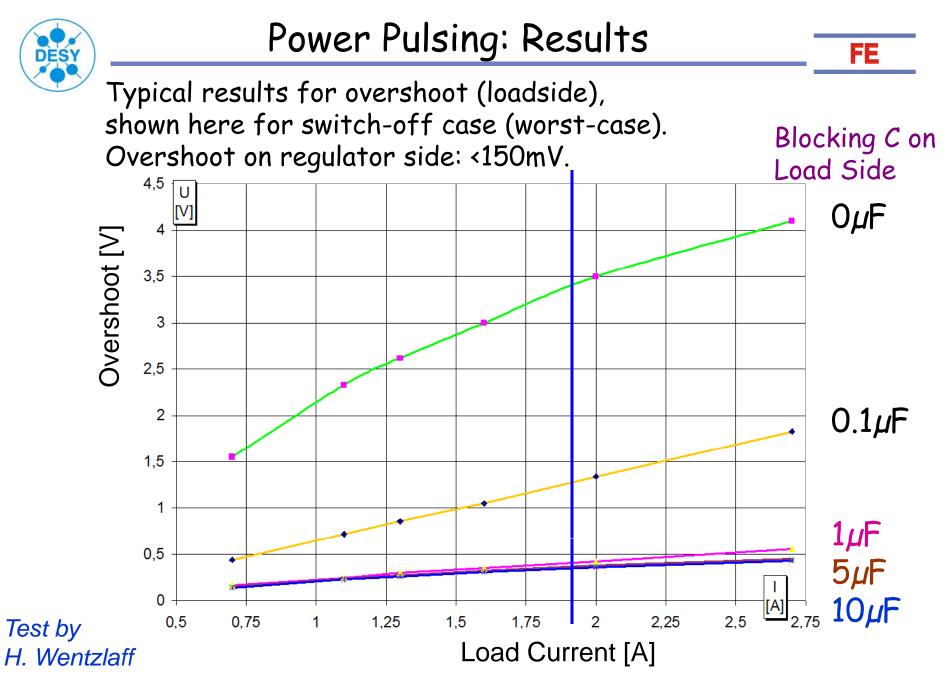

Tested:

Switched Current: 0.7...3A Load Block Caps : 0...10µF (later: distributed in gap)

EUDET Annual Meeting 2008 – NIKHEF

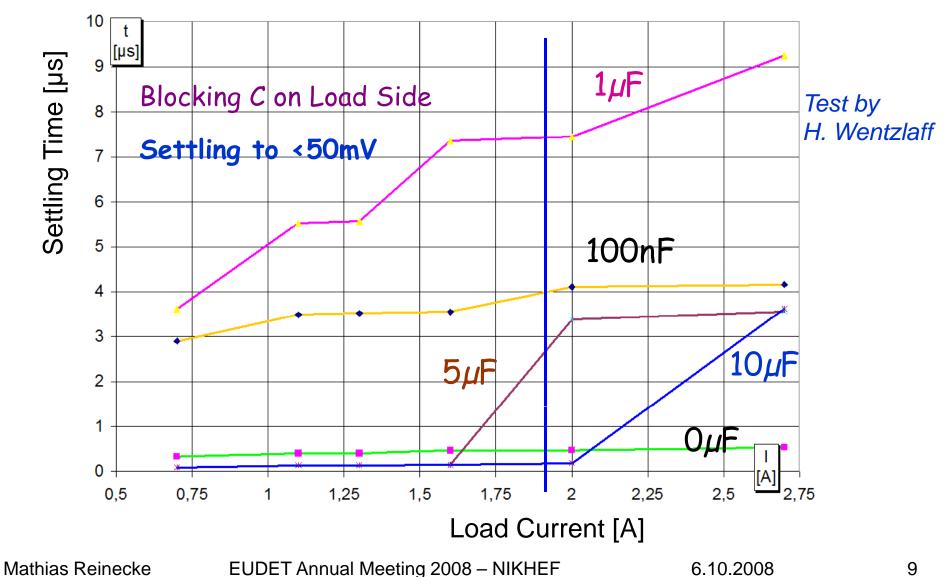



Power cycling test setup


<u>Settling time (Load side):</u> Voltage within 50mV of final value. Aim: reasonable values for efficient power cycling (< 50µs)

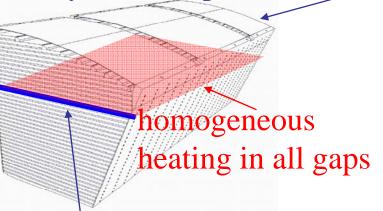
<u>Overshoot</u> Aim: Protection of devices, stable register settings.

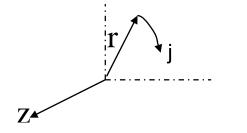
EUDET Annual Meeting 2008 – NIKHEF



Mathias Reinecke

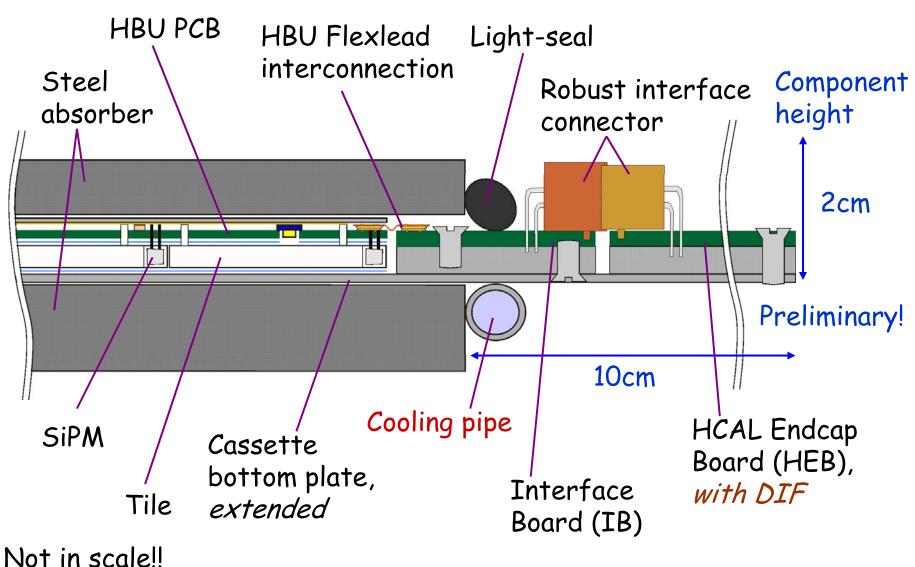
EUDET Annual Meeting 2008 – NIKHEF


Typical results for settling time (loadside, aimed: <50µs)



Calculation and Results by P. Göttlicher

symmetry: no transport at z=0m


cooling at the ends: $z=\pm 2.2m$

Heat transport in directions:

- homogeneous heating: No heat transfer in j
- r alternating structure
 with air gaps
 every air gap is heating
 →No heat transfer in r
- z cooling at end plate
 Heat flows in solid material,
 air gaps too small, no convection

inor in scale!

Mathias Reinecke

EUDET Annual Meeting 2008 – NIKHEF

11

Heat production: Power: P_{chan}=40_mW/chan ASIC: 25_mW/chan HV: +15_mW/chan: 50V*0.3_mA Infrastructure: + ??

Geometry:

$$\begin{split} N_{chan} &= 1000/m^2 \\ D_{steel} &= 2cm \text{ (thickness)} \\ L_{heat} &= 2.2m \text{ (length)} \\ A_{plane} &= 2m^2 \end{split}$$

Material constants: Stainless steel: Which one?

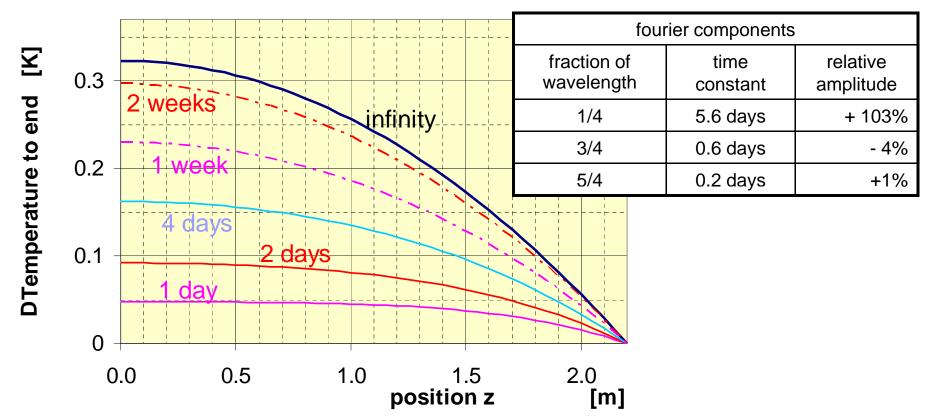
 $I_{steel} = 15W/Km$ other publication 15-25W/Km $k_{steel} = 3.7MJ/m^{3}K$

In detail see: P. Göttlicher "System aspects of the ILC-electronics and power-pulsing", Topical Workshop on electronics for Particle Physics (TWEPP-07), pp. 355-364, Prague, Oct. 2007

Temperature T for
$$\frac{\partial T}{\partial t} = 0$$
:
 $T = -(z^2 - L_{heat}^2) \frac{P_{chan}N_{chan}}{2\lambda_{steel}d_{steel}} \qquad \delta T (z=0) = 0.33K$

Time dependence (Fourier transformation with components parameterized by τ , $\alpha(\tau)$),

elements: A e-(t/ τ) cos(2p α (x/L_{heat}))


One cooled end, and one with to heat flow: α = (1/4, 3/4, 5/4,....)

$$\tau = \frac{\kappa_{steel} L_{heat}^2}{4\pi^2 \lambda_{steel} \alpha^2}$$

Slowest component (α =1/4) : τ = 5.6days

Mathias Reinecke

Heating up of HCAL

- -Heating of AHCAL stack is small (0.33K @ z=0), but cooling is needed at the end-cap (liquid cooling), external heating (e.g. ECAL) is not included in this calculation. Assumptions for the power dissipation correct?
- -Time constant of heating is large (several days)
- -Regulator setup enables small settling times (<10 μ s) and overshoots (<1V for 1 μ F blocking caps) for the ILC power pulsing.
- -Power of one layer is small (1% duty cycle): 110mW per in-detector layer, 10W in total for one layer (preliminary).