

Coupler Wakefield and RF Kick Simulations

Dirk Krücker

Status of MERLIN since SLAC meeting

old design

new design

Bugs in 1st MERLIN implementation

- RF kicks for the new design had been wrong
 - kt in y becomes larger
 - sign was wrong

Differences between RF calculations

- kick is tiny effect
 - orders of mag smaller then acc. field)
 - cancellation between upstream and downstream coupler
- Sensitive to RF coupler pen depth (Q)
 - different between calculations

Summary formula and numerical input

Numerical calculation RF Kicks

- MAFIA
- Omega3P
- HFSS

I did not manage to collect all results

MWS-discretization: 30lines@2GHz				
shift/mm pen/mm	-5	0	5	
4.5	3.347 19.9+j35.9	4.490		
6	2.466 47.6+j40.9	3.384 30.6+j54.3		
7.5	1.781 84.5+j50.0	2.4482 58.7+j65.0	3.987 37.4+j68.1	
9	1.272 130.3+j56.9	1.940 93.4+j83.3	3.464 65.1+j88.9	
10.5	0.9662	1.663	2.583 100.9+j86.5	
12		1.351	2.099 141.1+j65.0	

MWS-discretization	: 50lines@2GHz
--------------------	----------------

shift/mm pen/mm	-5	0	5
4.5	3.405		
6	2.488	3.423	
7.5	1.857 83.7+j14.2	2.623 59.1+j31.7	4.242 37.1+j35.5
9		2.008	3.237
10.5		1.570	2.542
12			

old values!

DESY M. Dohlus Sep 2003

RF Kicks in Merlin

see EPAC08 -TUPP047

M.Dohlus I.Zagorodnov LCWS/ILC2007 in paper wrong signs! talk is OK 6mm

Sum of upstream and downstream couplers

$$\mathbf{v} = (v_x, v_y) := 10^6 \cdot \mathbf{V}/V_{||} \qquad x,y \text{ [m]}$$

$$\mathbf{v}(x,y) \stackrel{old}{=} \begin{bmatrix} -82 + 58i \\ -9.2 + 1.8i \end{bmatrix} + \begin{bmatrix} -29 - 27i & 63 + 5.1i \\ 63 + 7.0i & 28 + 24i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{v}(x,y) \stackrel{new}{=} \begin{bmatrix} -82 + 58i \\ -74 - 8.7i \end{bmatrix} + \begin{bmatrix} -29 - 27i & 63 + 5.1i \\ 4.9 + 2.9i & -48 - 12i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

e.g.: on axis (0,0) for
$$\Delta y' = \frac{\Delta E|v_y|}{E}\Re\left\{e^{i(\phi_c-\varphi-k\Delta z)}\right\} \begin{array}{l} \text{on axis (0,0) for } \\ |\text{Vy(0,0)}|: \\ \text{old} \\ \text{new} \end{array} \begin{array}{l} 300 \text{ V} \\ \text{2415 V} \end{array}$$

 $\Delta z = -\Delta ct$, longitudinal position of a particle at φ ϕ_c coupler phase, φ RF phase = 5.3°, $k = 2\pi f/c$, $f = 1.3 \,\mathrm{GHz}$ $\Delta E = 31.5 \, \mathrm{GeV/m} \cdot l, E = 15 \cdot \cdot \cdot 250 \, \mathrm{GeV}$ l = 1.036 m

on axis (0,0) for 31.5GeV

Similar in Zenghai Li, talk Wakefest 07 TDR 785 V TDRM 2621 V <- larger (downstream rotated by 180°)

Approximation for New Design

There is no MAFIA field calculation for the modified design.

- Approximated in MERLIN by

The angle between HOM coupler and x-axis is only 42.5° in this case.

- The kick: 8 times larger for the new design.

Wakefield Kicks in Merlin

Numerical approximation of the coupler transverse wakefield kicks [V/nC] near the cavity axis (x,y[m]):

$$\mathbf{k}(x,y) \stackrel{old}{=} \begin{bmatrix} -21 \\ -19 \end{bmatrix} + \begin{bmatrix} 4300 & 70 \\ 30 & -900 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\mathbf{k}(x,y) \stackrel{new}{=} \begin{bmatrix} -2.5 \\ -0.2 \end{bmatrix} + \begin{bmatrix} 2330 & 40 \\ -20 & 1100 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

A particle in a bunch with distribution $\lambda(s)$ sees the transverse bunch wake potential:

$$\mathbf{W}(s) = 2\mathbf{k} \int_{-\infty}^{s} \lambda(s) ds$$

- Assumed to be purely capacitive → upper limit
- Added to cavity wakefield

Transverse cavity wakefield in MERLIN Tesla Report 2003-18

$$w_{\perp}(s) = 121 \left(1 - \left(1 + \sqrt{\frac{s}{0.92 \cdot 10^{-3}}} \right) e^{-\sqrt{\frac{s}{0.92 \cdot 10^{-3}}}} \right) \left[\frac{V}{pC \cdot m \cdot m} \right]$$

14/7/08

Dirk Krücker

Questions by Kiyoshi

- Purely capacitive wake is this a good approximation?
 - I do not have anything better, but fine as <u>upper limit</u>
- Usually wake potential as a linear function of distance, disappeared at 0?

$$W_{x,y}(s=0)=0 \leftarrow W(s) = 2k \int_{-\infty}^{s} \lambda(s) ds$$
 $W(s) \propto \operatorname{erf}(s/\sqrt{2}\sigma_z)$

- Can the coupler wake be included in the cavity wake?
 - It is added as a separate term. It cannot be absorbed into the cavity wake
 - W_T cavity only depends on r while for the coupler the dependence on the distance is different in x and y
- References, see above and talk by Igor Zagorodnov, LCWS/ILC07 and EPAC08: TUPP019, MOPP013

MERLIN simulations - Coupler Wakefield (DK et al., EPAC08 - TUPP047)

Size of Transverse Coupler Wakefield in Periodic Structure

M. Dohlus et al., MOPP013

Compared to 21 V/nC , 19 V/nC in my simulations

Significantly smaller now! 1/10

Summary

- RF kick in new design would be 8x larger
 - stability issue (phase, voltage)?
- Transverse coupler wakefield in periodic structure looks much smaller.
 - Is it still a problem?
- It would be useful to collect all numerical RF kick calculations.
- Plans:
 - Simulations with smaller wakefield kick.
 - I do not have the numerical values, yet.
 - RF stability.