

# SCRF-080612

**PM Presentations** 



### Agenda

PM Report :

Agenda: A. Yamamoto,

– Dubna M. Summary: M. Ross

"E" re-evaluate time: N. Walker (reported by M.R.

Group Report:

– Cavity: L. Lilje

Cavity Integration: H. Hayano

Cryomodule: N. Ohuchi

– Cryogenics: T. Peterson

HLRF:S. Fukuda

MLI:C. Adolphsen (PPT report)

FLASH-9mA test: J. Carwadine

Next meeting
 July 9



# Dubna GDE Workshop ОИЯИ, Дубна, 04-06.06.2008

# Marc Ross, Akira Yamamoto, Nick Walker GDE Project Managers

Goals for 2008:

**Cost and Risk reduction** 

**SCRF** 

**CERN** engagement

**R&D Plan** 

**Consolidation of RDR cost estimate** 

To be reported LCWS 08 Chicago



#### Post RDR – ILC

- One year later:
- Focus on R&D →
  - to mitigate technical risk
    - (some of which assumed for RDR)
  - to enable cost reduction
- Managing the RDR
  - held kick off meetings
  - working on consolidating cost information
- Strengthening links with partners
  - multi-lateral GDE
  - ca. 400 members



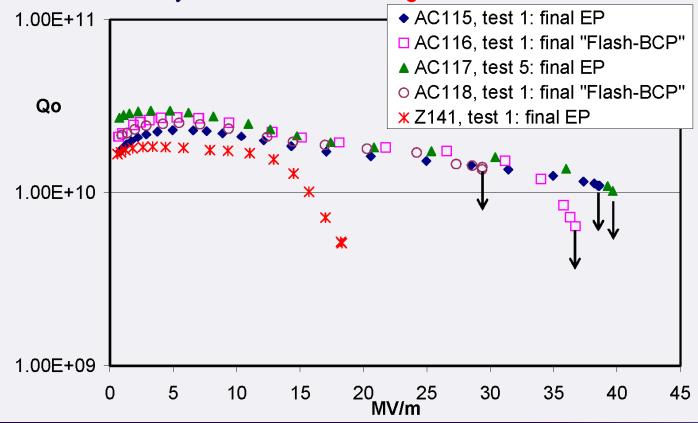
## Superconducting RF R&D

#### Three components to SCRF R&D:

- 1. Gradient (S0)
  - 35 MV/m baseline cavity gradient
  - should be able to build two x 11 km cold linacs with operational gradient 10% below this -> realistically; practically
  - Demonstrations underway!
- 2. Plug Compatibility (includes S1)
  - Purpose:
    - Encourage innovation in R&D phase
    - Motivate practical 'Project Implementation'
- 3. System Tests (S2)
  - show that the whole complex functions



### **ILC SCRF R&D - 2008**


Where are we? What has been done in 2008? Gradient (S0) *Cavity* 

- 10.2007 :
  - results from 15 cavities (DESY Zanon)
  - some cavities tested many times;
    - field emission reduced using ethanol rinse
  - Average 31.5 MV/m
- 06.2008:
  - new batch of cavities (Accel) 5 tested
  - industrial bulk electro-polish
  - first DESY Accel results with ethanol rinse to suppress field emission
  - Accel Average: 36.2 MV/m
- 850 cavities to be ordered this year for XFEL / EU FP7
- additional optical inspection systems in fabrication



#### 6th cavity production – rf results

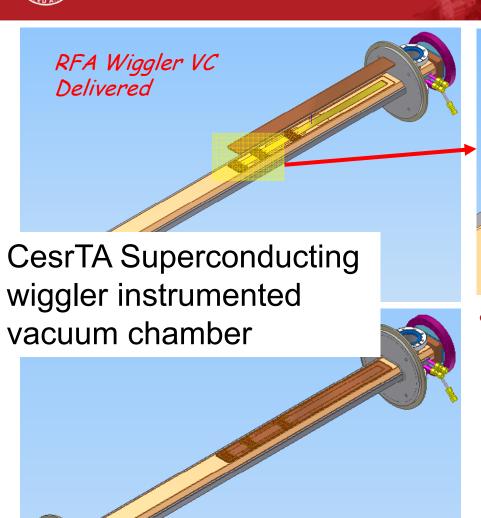
- excellent + promising first results including first Plansee nine-cell (AC115)
- Z141 as first cavity with surfaces damages after fabrication under investigation

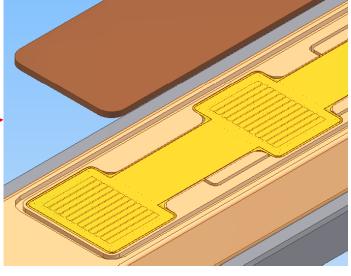




### **ILC SCRF R&D - 2008**

- Plug Compatibility (included in S1) Cryomodule
  - Progress toward consensus: due 2008
  - This is a real step toward 'industrialization' for a global ILC
- System Tests (S2) RF Unit
  - Partly started with 'FLASH / TTF, 9 mA test'
  - Full beam loading, high gradient (~ 30 MV/m avg)
     March 2009





# Accelerator Systems R &D: Beam Tests

- Damping Ring Beam dynamics electron cloud
  - CesrTA program moving forward →
    - Thanks to strong KEK / NSF-DOE support
  - beam tests now underway
  - First results LCWS 08 Chicago
- Beam Delivery Stabilization and Precision
  - ATF2 International Collaboration
  - First beam October 2008



#### Chambers with Thin RFAs





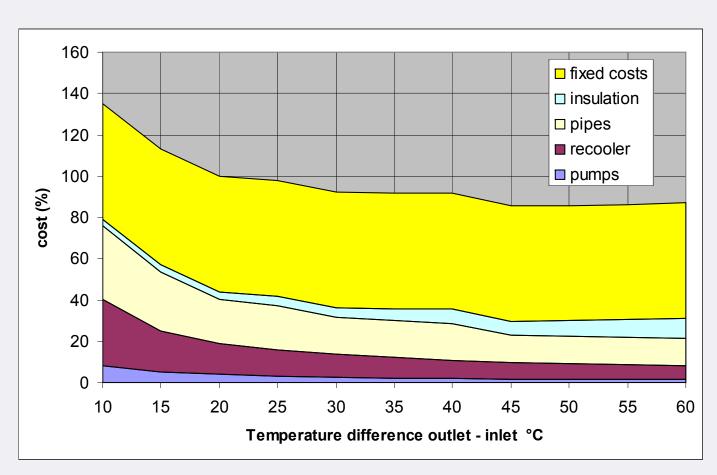
- Loss of US collaborators impacted development heavily
  - Cornell has picked up detailed design
  - Now ready for final design review
  - Construction now starting at LBNL as part of CU-KEK-LBNL-SLAC collaboration

06.06.2008












## **CFS Value Engineering**

- RDR is our baseline
  - strong, valid cost and design basis
- the 'uniform' (teamwork-based) site development approach
  - working closely together /
  - consolidating resources
- Specific FOCUS GROUP goals for this workshop:
  - A. 'Quantify cost impact for near-surface scenarios'
    - requirement matrix
  - B. Develop 'parametric models for infrastructure requirements'
    - $\rightarrow$

# Cost cutting by increasing the temperature difference



Fixed costs: chillers, pressed air, water treatment, auxiliary pipes, etc

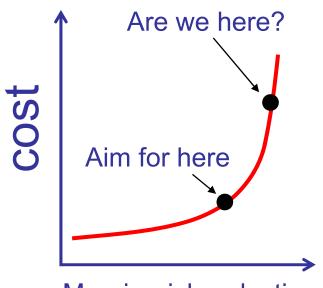
recooler:
constant temperature
difference for the
heat flow at the cold
side (e.g. the air
temperature)

insulation: always the same heat flow

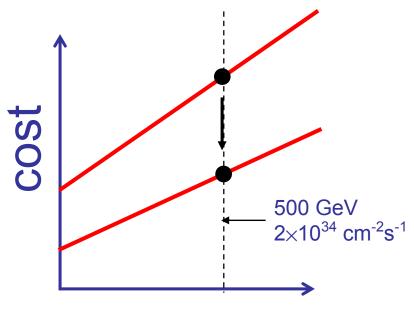
The outlet temperature should be less than  $70^{\circ}$  C:

Otherwise the water will be to hot for some equipments




# CFS Value Engineering (2)

#### The purpose of this workshop


- (hence inter-group 'focus groups')
- The Dubna shallow site:
  - subsurface 'communication building' cost 1/10 bored tunnel
  - RDR WBS input from GSPI (ГСПИ) to be provided
- Next step:
  - Joint Development of Dubna site:
    - GDE (EU), JINR, GSPI
  - How to take best advantage of special features...



# The Minimum Machine Study



Margin, risk reduction, redundancy, ... (*indirect* performance)



Physics "figure of Merit" (*direct* performance)

Minimum cost machine
Understand the performance derivatives



# Towards a 'Minimum Machine' Configuration

- Working Groups:
  - C. <u>Siting</u>: Examine possible sites and evaluate possible design differences that accommodate features. Includes staging, design modifications and upgrade issues.
  - D. <u>Accelerator Systems</u>: particular focus on the central injection complex, BDS and RTML.
- Beginning of the process of:
  - Re-thinking the layout of the machine for a lower cost
  - Look for new and innovative ideas particularly staging options
  - **Defining the 'minimum machine' layout**



## **Output of Workshop**

- Significant potential identified:
  - 4-5 km tunnel and beamline
  - ~100 MILCU for CFS
  - ~100 MILCU for accelerator components

sets the typical scale of possible reduction

- All of the items discuss have associated impact on performance which will need to be quantified
  - Action items for LCWS
    - CMG and relevant TAG leaders

# Milestone – Dubna GDE meeting:

- Release of the ILC Technical Design Phase R & D
   Plan
  - today
- The plan includes an outline of our
  - strategy
  - work plan
  - schedule
  - deliverables
  - resources
  - constituency
- very useful for management, reviews, funding agencies, ...



### R&D Plan Release 2



#### ILC Research and Development Plan | for the Technical Design Phase

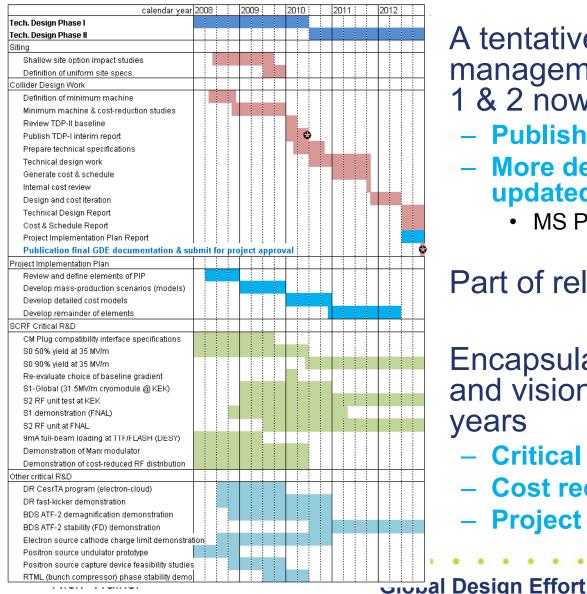
Release 2

June 2008

ILC Global Design Effort Director: Barry Barish

Prepared by the Technical Design Phase Project Management

Project Managers:


Marc Ross Nick Walker Akira Yamamoto Look! NO DRAFT!

Released today

 Next review and release:
 December 08



### PM TD Phase 1 & 2 Schedule



A tentative top-level management plan for TD Phase 1 & 2 now exists

- Published in R&D Plan
- More detailed schedule being updated
  - MS Project

Part of release 2

Encapsulates the PMs strategy and vision for the next four years

- Critical R&D
- Cost reduction / machine design
- **Project Implementation Plan**

JINR GDE Workshop 6.06.08



### Critical R&D

| calendar year î                                    | 2008 | 2009 | 2010 | 2011 | 2012 |  |
|----------------------------------------------------|------|------|------|------|------|--|
| Tech. Design Phase I                               |      |      |      |      |      |  |
| Tech. Design Phase II                              |      |      |      |      |      |  |
| SCRF Critical R&D                                  |      |      |      |      |      |  |
| CM Plug compatibility interface specifications     |      |      |      |      |      |  |
| S0 50% yield at 35 MV/m                            |      |      |      |      |      |  |
| S0 90% yield at 35 MV/m                            |      |      |      |      |      |  |
| Re-evaluate choice of baseline gradient            |      |      |      |      |      |  |
| S1-Global (31.5MV/m cryomodule @ KEK)              |      |      |      |      |      |  |
| S2 RF unit test at KEK                             |      |      |      |      |      |  |
| S1 demonstration (FNAL)                            |      |      |      |      |      |  |
| S2 RF unit at FNAL                                 |      |      |      |      |      |  |
| 9mA full-beam loading at TTF/FLASH (DESY)          |      |      |      |      |      |  |
| Demonstration of Marx modulator                    |      |      |      |      |      |  |
| Demonstration of cost-reduced RF distribution      |      |      |      |      |      |  |
| Other critical R&D                                 |      |      |      |      |      |  |
| DR CesrTA program (electron-cloud)                 |      |      |      |      |      |  |
| DR fast-kicker demonstration                       |      |      |      |      |      |  |
| BDS ATF-2 demagnification demonstration            |      |      |      |      |      |  |
| BDS ATF-2 stability (FD) demonstration             |      |      |      |      |      |  |
| Electron source cathode charge limit demonstrati   | on:  |      |      |      |      |  |
| Positron source undulator prototype                |      |      |      | ]    |      |  |
| Positron source capture device feasibility studies |      |      |      |      |      |  |
| RTML (bunch compressor) phase stability demo       |      |      |      |      |      |  |



# Design / Cost Reduction / PIP

| calendar year                              | 200 | 18 :  |      | 2009  | 9 [ |      | 201 | 0 : |   | 2011 | 1 [ | 201: | 2 [ |  |
|--------------------------------------------|-----|-------|------|-------|-----|------|-----|-----|---|------|-----|------|-----|--|
| Tech. Design Phase I                       |     |       |      |       | Т   | Т    |     |     |   |      |     |      |     |  |
| Tech. Design Phase II                      |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Siting                                     |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Shallow site option impact studies         |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Definition of uniform site specs.          |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Collider Design Work                       |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Definition of minimum machine              |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Minimum machine & cost-reduction studies   |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Review TDP-II baseline                     |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Publish TDP-I interim report               |     |       |      |       |     |      |     | 0   | ╧ |      |     |      |     |  |
| Prepare technical specifications           |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Technical design work                      |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Generate cost & schedule                   |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Internal cost review                       |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Design and cost iteration                  |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Technical Design Report                    |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Cost & Schedule Report                     |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Project Implementation Plan Report         |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Publication final GDE documentation & su   | ıbm | it fo | г рг | oject | ap  | ргоч | ral |     |   |      |     |      |     |  |
| Project Implementation Plan                |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Review and define elements of PIP          |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Develop mass-production scenarios (models) |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Develop detailed cost models               |     |       |      |       |     |      |     |     |   |      |     |      |     |  |
| Develop remainder of elements              |     |       |      |       |     |      |     |     |   |      |     |      |     |  |



## THE RDR LIVES ON!





### **How Good is the RDR Concept?**

- The design has been carried out by Area Systems that have been built up into an overall design.
  - We have advanced in integrating that design and even in being able to evaluate proposed changes that cross several area systems (e.g. central injector – E Paterson)
  - A more integrated design approach is envisioned for the engineering design stage.
- Technical system designs still immature, resulting in lack of detailed specifications, requirements and value engineering has been deferred



# CLIC-ILC Cost & Schedule Group Summary, future tasks

- Two specific topics for collaboration: progress to be reported on at the CLIC workshop in October...
- 1. Defining common templates that will be gathered and/or used to catalog cost estimates from the technical groups
  - Timely, since both groups are in the process of developing such templates.
  - Could allow use of common analysis and reporting tools
  - Strongly linked with cost management processes and tools
- 2. Defining cost management processes and associated tools
  - Requires consideration of how the cost estimate data will be used: report generation, analyses, trade studies, etc
  - The CLIC group will be invited to participate in discussions on requirements for consultancy
  - Has a short timeframe for the ILC group since we are in the process of engaging a consultancy to support developing of cost management tools.
- <u>General comment:</u> both groups are interested in learning from each other. Additional topics that came up during discussions include:
  - Structuring and organizing cost estimate information and bases of estimates
  - Handling uncertainty and risk in the cost estimates



### **GDE Meetings:**

#### you requested:

- fewer meetings: 3 down to 2.
  - One 'collaboration-wide' → LCWS 08 Chicago
    - broad attendance and comprehensive program, please!
    - structure based on our Technical Area Groups
  - One thematic (this is the first)
  - Proposed for early 2009:
    - AAP Review 3 days, plenary 2 days
- advance planning
  - Conveners, focus / working groups

# Homework for LCWS 08 Chicago:

#### based on Dubna priorities:

- CFS / Accelerator Design updates
  - Cost reduction
- CFS change requests
  - complete Value Engineering cycle started here
- Collaboration work and reports (e.g. CLIC ILC)
- R & D Plan updates
  - trade offs developed here
  - (the basis of value engineering is cost/performance trade off)



#### To our JINR Hosts:

- Позвольте выразить Вам от всего сердца бесконечную благодарность за проведение Совещания, за отличную организацию, гостеприимство и заботу!
- Спасибо!

- Thank you!
- Excellent hospitality! Excellent organization!
- Beautiful surroundings, excellent location, excellent logistics, etc!