PFA status in brief

Mat Charles Tae Jeong Kim Usha Mallik

SiD PFA status

- Lots of changes to the PFA recently -- most importantly:
 - Short second pass to pick up cluster pieces missed in first pass. Currently using simple cone -- we can do better.
 - Smarter handling of shared hits (hit-by-hit, not en bloc).
 - Trying harder to find structure in hadronic showers
 - Addition to main clustering pass: as well as usual link types (MIP-MIP, MIP-clump, etc), link track seeds to clusters in tight cone downstream of showering point.
 - Share teeny clusters by cone from showering point as well as proximity.
 - Don't drop any hits.

Using our standard benchmark^{*}, performance is now:

sid01	sid01_scint		
HCAL: Digital RPC	HCAL: Digital scintillator		
mean ₉₀ + rms ₉₀ = -0.93 ± 4.15	mean ₉₀ + rms ₉₀ = -1.06 ± 3.76		
dM/M = rms ₉₀ /(m _Z +mean ₉₀) = 4.6%	dM/M = rms ₉₀ /(m _Z +mean ₉₀) = 4.2%		

* $e^+e^- \rightarrow Z(\nu\nu) Z(qq)$, $\sqrt{s}=500$ GeV, q=u/d/s, looking at dijet invariant mass residuals. Remember, rms90 is less than real resolution -- typically 70-80%.

Trying to compare with Pandora

=4.2% is a big improvement from before, but: I short of what we want for physics performance -- we have more rk to do!

not as good as Pandora numbers.

HV

omparison with Pandora is not quite apples-to-apples: dora numbers use event energy resolution rather than mass of osted jets -- don't need to measure direction.

dora numbers quoted for mono-energetic jets.

Fandora numbers made with a bigger, deeper detector.

Effect of 3x3 vs 1x1 HCAL segmentation?

Here is Marcel's Pandora comparison table from May:

	SiDish	SID	LDC00Sc	Comments
Starting point (200 GeV qq)	35%	46%	30%	from Pandora/ Memory
- RPC (3%)		43%		from Pandora
6 more layers in HCAL (2 %)		41%		guesstimated
+TPC Tracking tricks (2 %)		39%		guesstimated
+10 layers in ECAL (2 %)	33%	37%		from Pandora
+0.25 m radius (1 %)	32%	36%		from Pandora
+0.2 m radius – 1T B field (2 %)	30%	34%	30%	from Pandora

Trying to compare with Pandora

Let's look at qq events & try to compare like with like:

	Pandora					Sid PFA	
	LDC00SC	SiDish (scint)	SiDish (rpc)	SiD (scint)	SiD (rpc)	SiD (scint)	SiD (rpc)
qq91	25%	28%	32%	?	?	31%	36%
qq200	30%	35%	39%	43%	46%	41%	45%
qq500	57%						

Not bad! We're pretty much even with how we think Pandora would do on SiD for ~100 GeV jets. (Aiming to do better, though -- Pandora isn't optimized for our detector.)

Trying to compare with Pandora

Let's look at qq events & try to compare like with like:

	Pandora				Sid PFA		
	LDC00SC	SiDish (scint)	SiDish (rpc)	SiD (scint)	SiD (rpc)	SiD (scint)	SiD (rpc)
qq91	25%	28%	32%	?	?	31%	36%
qq200	30%	35%	39%	43%	46%	41%	45%
qq500	57%					97%	109%

... but performance tanks for higher energy jets.

Conclusions & thoughts

- PFA performance is improving
 - Brainstorming + big push over last month helped a lot. (Thanks!)
 - Still lots of ideas to try & known problems to fix
- There is still a long way to go
 - Performance still not where we'd like for physics (dM/M ~ 4-5%... we want <3% or better)
 - Things are especially bad for higher-energy jets.
- Starting to catch up with Pandora for $E_{jet} \sim 100 \; GeV$
 - Lots of caveats -- not good at high energy, assumptions about extrapolation from SiDish to SiD, HCAL segmentation, etc.
 - And we should really be doing BETTER than Pandora -- SiD is our own back yard & we should be optimized for it. Ideally, SiD-PFA on SiD should be competitive with Pandora on ILD.
 - But we can now start forming our own opinions on detector optimization.