

Overview of GDE activities)

Nick Walker (DESY/GDE) ILC-HiGrade Kick-Off Meeting 28.08.2008

Historical Background

 Over 15 years active international R&D

İİL

- NLC/JLC based on Cu x-band technology (11.4 GHz)
- CLIC two-beam accelerator (30 GHz)
- TESLA Superconducting RF (SCRF, 1.3GHz)
- 2002 German BMBF XFEL decision
 - Request to internationalize effort
- 2004 **ITRP** recommends SCRF Linac Technology for the ILC
 - Recommendation later endorsed by ICFA
- 2005 Global Design Effort (GDE) Formed

ILC GDE: A Truly Global Effort

Global Design Effort

Global Design Effort

- 2005: Formation of the GDE by ICFA
 - Barry Barish director
- History

ilr

ΪĹ

- Dec 2005 Definition of baseline design
- Dec 2006 Completion of conceptual design with cost estimate (including first iteration cost reduction)
- Jul 2007 Publication of 4-volume <u>Reference Design Report</u> <u>(RDR)</u>.
- 2008 restructuring for <u>Technical</u> <u>Design Phase</u>

ILC Requirements

- E_{cm} adjustable from 200 500 GeV
- Luminosity: $\int Ldt = 500 \text{ fb}^{-1}$ in 4 years
 - Peak at max. energy of 2×10³⁴cm⁻²s⁻¹
 - Assume $1/\gamma$ L scaling for <500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%
- The machine must be upgradeable to 1 TeV
- Two detectors
 - Single IR in push-pull configuration
 - Detector change-over in not more than 1 week

ILCSC Parameters group

ILC Reference Design

Cost (VALUE) Estimate

The GDE Post-RDR

- Publication of the RDR was a major milestone
- Analysis of the RDR design/cost \rightarrow priorities for Technical Design Phase
- Re-structuring of GDE into a more traditional Project Structure
 - Hierarchal org. chart
 - Project Management Team
 - Ross, Walker, Yamamoto
- Focus of TDP work:
 - Risk mitigating R&D
 - Overall Cost Reduction / Containment (optimisation)
 - Project Implementation Plan (PIP)

TD Phase Project Structure

TD Phase Project Structure

A Global R&D Plan

İİL

- Available from: http://ilcedmsdirect.desy.de/ilcedmsdirect/file.jsp?edmsid=D000 0000*813385
- **First Official Release**
- Next review and release: December 08
- Contains summary of **Global Resources** available for ILC or ILC-related activites.

Technical Phase Roadmap

Global Design Effort

Technical Phase I Roadmap

Technical Phase II Roadmap

- Development of "plug compatible" linac components
 considered critical for global mass-production models
- XFEL (European) planned CM mass-production (in-kind contribution scheme).

PM TD Phase 1 & 2 Schedule

calendar year	2008		2009		2010	2011	2012	
Tech. Design Phase I								
Tech. Design Phase II								
Siting				_				
Shallow site option impact studies								
Definition of uniform site specs.								
Collider Design Work								
Definition of minimum machine								
Minimum machine & cost-reduction studies								
Review TDP-II baseline								
Publish TDP-I interim report					C			
Prepare technical specifications								
Technical design work								
Generate cost & schedule								
Internal cost review								
Design and cost iteration								
Technical Design Report								
Cost & Schedule Report								
Project Implementation Plan Report								
Publication final GDE documentation & su	bmit f	or pro	ject a	рргоч	al			(
Project Implementation Plan								
Review and define elements of PIP								
Develop mass-production scenarios (models)								
Develop detailed cost models								
Develop remainder of elements								
SCRF Critical R&D								
CM Plug compatibility interface specifications								
S0 50% yield at 35 MV/m								
S0 90% yield at 35 MV/m								
Re-evaluate choice of baseline gradient								
S1-Global (31.5MV/m cryomodule @ KEK)								
S2 RF unit test at KEK								
S1 demonstration (FNAL)								
S2 RF unit at FNAL								
9mA full-beam loading at TTF/FLASH (DESY)								
Demonstration of Marx modulator								
Demonstration of cost-reduced RF distribution								
Other critical R&D								
DR CesrTA program (electron-cloud)								
DR fast-kicker demonstration								
BDS ATF-2 demagnification demonstration								
BDS ATF-2 stability (FD) demonstration								
Electron source cathode charge limit demonstra	tion							
Positron source undulator prototype								
Positron source capture device feasibility studies	5							
RTML (hunch compressor) phase stability demo								

A tentative top-level management plan for TD Phase 1 & 2 now exists

- Published in R&D Plan
- More detailed schedule being updated
 - MS Project

Part of release 2

Encapsulates the PMs strategy and vision for the next four years

- Critical R&D
- Cost reduction / machine design
- Project Implementation Plan

SCRF Cavity Gradient

R&D priority – very high

- RDR estimate: 10% improvement in gradient reduce ILC cost by 7%
- Goal: Determine production yield at nominal (35 MV/m) gradient
 - TDP1 Goal: 35 MV/m 50% yield
 - TDP2 Goal: 35 MV/m 80% yield
- Progress since technology choice (08/2004):
 - (Primarily at DESY; also J-Lab and KEK)
 - 2006: 50% yield 27.5 MV/m
 - 2008: 50% yield 31.5 MV/m
 - each based on sample population of 15 nine cell cavities
- Recent XFEL Industrial cavity pre-production series
 look very promising

Table 5.1: Projected number of superconducting RF cavities available in each region and the number of planned tests for the TD Phase (TDP1 is 2004 to mid-2010), and up to 2012.

Americas	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10	TOTAL TDP1	FY11	FY12
Cavity orders	22	12	0	10	10	52	10	10
Total 'process and test' cycles		40	5	30	30	9 8	30	30
Asia	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10		FY11	FY12
Cavity orders	8	7	15	25	15	59	39	39
Total 'process and test' cycles		21	45	75	45	152	117	117
Europe	2004-06 (actual)	2007 (actual)	2008	2009	2010		2011	2012
Cavity orders	60*			838		8 9 8		
Total 'process and test' cycles		14	15	30	100	109	354	354
Global totals								
Global totals - cavity fabrication	90	19	15	873	25	1008	49	49
Global totals - cavity tests	0	75	65	135	175	359	501	501

* Thirty European cavities were ordered in 2004.

Global Design Effort

Table 5.1: Projected number of superconducting RF cavities available in each region and the number of planned tests for the TD Phase (TDP1 is 2004 to mid-2010), and up to 2012.

Americas	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10	TOTAL TDP1	FY11	FY12
Cavity orders	22	12	0	10	10	52	10	10
Total 'process and test' cycles		40	5	30	30	9 8	30	30
Asia	FY06 (actual)	FY07 (actual)	FY08	FY09	FY10		FY11	FY12
Cavity orders	8	7	15	25	15	59	39	39
Total 'process and test' cycles		21	45	75	45	152	117	117
Europe	2004-06 (actual)	2007 (actual)	2008	2009	2010		2011	2012
Cavity orders	60*			838		8 9 8		
Total 'process and test' cycles		14	15	30	100	109	354	354
Global totals								
Global totals - cavity fabrication	90	19	15	873	25	1008	49	49
Global totals - cavity tests	0	75	65	135	175	359	501	501

* Thirty European cavities were ordered in 2004.

808 XFEL production + ~30 ILC-HighGrade

Global Design Effort

Global SCRF R&D (Examples)

1st U.S. built ILC/PX Cryomodule

Major SCRF Infrastructure at FNAL (US)

TTF at DESY European XFEL at DESY

NML Facility

Cost Reduction: A Strategy

- Required engineering resources will be very limited in TD Phase 1
- Use time to take a fresh look at RDR design
 - Perform design/performance iterations that were not completed in RDR phase
- Approach

<u>ilr</u>

- Re-evaluate RDR design with a strong emphasis on COST drivers
- Specifically, focus on machine layout which could reduce the use of <u>underground volume</u> \rightarrow cost driver
- Push back on conservatism in Conventional Facilities (i.e. processed water cooling, electrical power etc.) \rightarrow cost driver
- Evaluate possible shallow site solutions
- As a study tool, develop concept of the *Minimum Machine*

The Minimum Machine Study

Margin, risk reduction, redundancy, ... (*indirect* performance)

Physics "figure of Merit" (*direct* performance)

Minimum Machine Understand the performance derivatives

Minimum Machine Concepts

- Removal of service tunnel 1
 - **XFEL-like solution**
 - Surface klystron solutions
- Tentative under discussion Integration of e+/e- sources with upstream beam delivery 2. system (same tunnel)
 - Move e+ undulator source to end of linac (250 GeV point)
 - e- source and 5 GeV injector linacs share BDS tunnel
- Main Linac Novel high-power RF distribution 3.
 - "klystron-clusters" on surface (30 klystrons/cluster)
 - 300 MW "pipe" distribution over 1 km using over-moded wavequide
 - (single tunnel solution)
- Main Linac adoption of Marx modulator 4.
- Reduced beam-power parameter set 5.
 - Half klystron/modulators
 - $6 \text{km} \rightarrow 3 \text{km}$ damping ring
- Two-stage \rightarrow single-stage bunch compressor 6.
- Remove all support for TeV upgrade 7.
 - Mostly impacts BDS

Potential cost savings primarily via reduced CFS requirements

Minimum Machine Plan

• TD Phase 1

ilc

- Develop 'minimum machine' description as *alternative* to RDR baseline
- Develop list of issues / studies to evaluate MM comparison with RDR baseline for CY 2009
 - Including cost saving
- Early 2010 (end of TDP1) evaluate MM studies and status of critical R&D (parallel), and
- Agree on new formal reference design baseline for TD Phase 2
- TD Phase 2
 - Engineering and updated value estimate based on adopted reference design

Project Implementation Plan

- From the ITRP Executive Summary (rationale for cold decision) 2004:
 - "The construction of the superconducting XFEL free electron laser will provide prototypes and test many aspects of the linac.
 - The industrialization of most major components of the linac is underway."
- The European XFEL is Europe's dominant contribution to the ILC

ILC and the European XFEL

- XFEL will mass-produce, install and commission 101 SCRF cryomodules from end 2009 until end 2012.
 - Very similar to ILC cryomodules
 - 808 cavities, HP couplers, tuners etc.
 - Operational cavity gradient requirement lower for XFEL
 - XFEL 23.5 MV/m
 - ILC 31.5 MV/m
 - An important systems test for ILC
- XFEL as international "in-kind contribution" project
 - Linac technology supplied by collaboration of Germany (DESY), France (SACLAY, LAL), Italy (INFN), Spain (CIEMAT), Poland.
 - Important experience for International Project Implementation Plan for ILC

In Summary

- In a truly (perhaps unique) global collaboration, the GDE has successfully produce a design for the ILC and an associated cost estimate
 - Based on a mature linac technology
 - A "low risk" design
- The GDE is now planning a 'Technical Design Phase' which will
 - Consolidate the design and reduce the cost
 - Complete risk-mitigating R&D
 - Ramp-up SCRF facilities and expertise and Americas and Asian regions
 - Produce a realistic Project Implementation Plan
 - Together with FALC
- The European XFEL will provide a significant ILC resource!
 - Industrialisation / mass production infrastructure
 - Systems tests (10% ILC linac prototype)
 - lin-kind contribution model
- Ready for project approval in 2012