

ILD tail catcher?

Felix Sefkow

ILD MDI meeting August 12, 2008

- HCAL thickness
- Need for muon ID
- Usefulness of tail catcher

- The HCAL depth is rather low
 - 4th concept: 10 λ
 - Was always criticized
- PFLOW reduces the problem (for charged particles)
 - To what extent at high E?
- Shower shape "extrapolation"?
 - test beam analysis ongoing
 - Can recover mean leakage, but not fluctuations
- How much does the tail catcher recover?
 - test beam
 - Pandora tools are there

	Leakage – Calorimeter energy correlation													
	Num per p	ber of ne parton (20	utral had 00GeV)	rons Remark:										
		K^0_L	n	$e^{-4} = \frac{1}{54.6}$										
	b	0.966	0.885	51.0										
	с	0.910	0.990	$e^{-5} = \frac{1}{148.4}$										
	d	0.838	1.101											

Percentage of events with a leakage more then 5% of energy

16-sectors

Energy [GeV]	200	100	50	25	10
b	25.9	17.3	10.4	7.6	3.0
с	29.4	17.5	12.5	10.3	4.1
d	26.4	19.9	11.5	9.7	5.6
u	26.5	19.9	12.4	10.5	4.2
in average	27.1	18.7	11.7	9.5	4.2

8-sectors

in average	45.4	31.8	22.1	13.7	5.7
			_		

16 sectors

0.819

u

1.045

Vasiliy Morgunov

- Excellent muon ID in the calorimeters
- Yes, but...
- What counts is hadron rejection
- Sail-through probability alone is $exp(-n\lambda) = 0.7\%$ for n=5
 - In addition: punch-through, decay in flight
- Muon purity depends on likelihood ratio:
 - Hadron rejection
 - Hadron abundance
- Should be studied in physics channels (b-tag, isolated pions,..)
- Conclusion: some instrumentation of the iron yoke needed anyway.

- Naively: check the rear section of HCAL whether shower "ended"
- Problem: large shape fluctuations and disconnected fragments
 - Does not work as well as for e.m. showers

V.Morgunov

Felix Sefkow August 12, 2008

Reconstructed energy

Rekonstruierte Energie

Energieaufloesung

- "onset" of leakage when shower max moves out
 - Depends on energy
- Resolution degrades as energy is lost

- Improvement also with incomplete measurement
- No weights applied
- Keep the coil thin!

00^L

For charged pions with >5% of E inside TC

On tail-catching

From V.Zutshi, NIU, 2004

9

Accounting for material in the coil...

E_{rec}/E_{gen} 50 GeV π^{\pm}

11

ILD TC

August 12, 2008

Conclusion:

- Case for tail catcher based on gut feeling and fragmented information
- On this basis, it is too early to discard the option
- Needs to be addressed in more serious studies (PANDORA)
 - The need (in view of PFLOW tools)
 - The performance (seems to work even after coil!)
- Iron yoke instrumentation is needed anyway for muon hadron separation
 - Several layers for redundancy
 - Layers can be made as thin as HCAL layers: 0.6cm plus cassette
- Tail catcher
 - 10 cm absorber thickness only first guess