SCRF Infrastructure at CERN?

Electron Accelerator R&D for the Energy Frontier

15.5.2005

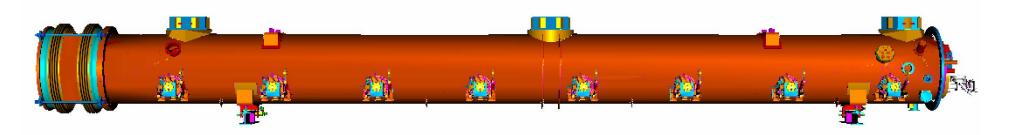
Lutz Lilje

DESY -MPY-

Overall Framework

- GDE Discussions
 - Effort needed
 - To make ILC-gradients more reproducible
 - Any step in Europe should be integrated in the larger R&D framework
 - Step toward a integrated systems test
 - At least the size of one RF unit, which determines the number of cavities to at least 30
 - Knowledge transfer to industry
 - Large contribution of the XFEL
 - But: the XFEL will not have the time to explore all the parameter space (see below)
- FP7 preparation
 - Come to some conclusions here

Primary goal:


Production of ILC prototype modules (4th generation) in Europe

Scope

- Should include building all parts
 - Cavities
 - Couplers
 - Magnet
 - BPM
 - Cryostat vessel

- Improve processes
- Avoid bottlenecks

Cavity Preparation Infrastructures Today

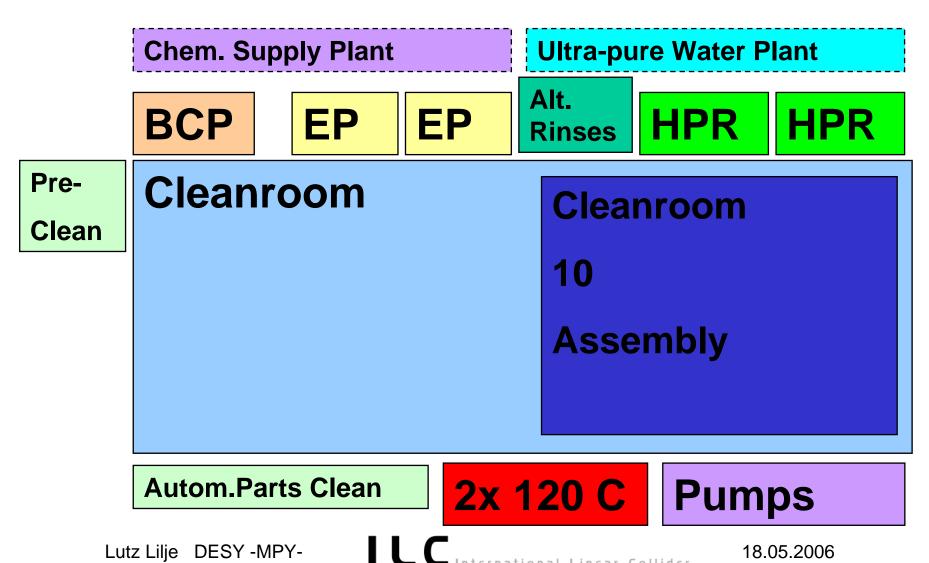
- Some infrastructure is available in Europe (not only DESY)
- Most setups are still R&D size
 - Often single-cell cavities
 - Small through-put
- Single-line of processing
 - No redundancy
- Have come to age
 - Materials
 - Overall layout needs significant re-work with today's knowledge
 - Electropolishing as the baseline process
 - required number of high pressure water rinses

Next Generation Cavity Preparation Infrastructure I

Main Features

- Improved electropolishing
 - Focus to avoid sulphurus contamination
 - Redundancy
- Improve Final cleaning
 - Flexibility needed here e.g. alcohol rinses
- High pressure rinse (HPR)
 - Online particle count integrated in drain water line
 - Redundancy
- Cleaning of parts
 - Automation needed: screws used as example
- Improved/novel methods of QA/QC

Next Generation Cavity Preparation Infrastructure II


Modular setup

- Institutes get responsibility for part of the process (HPR design, EP design etc.)
- Redundant setup
 - 2 x EP,
 - 2 x HPR,
 - 2-3 120 °C bakeout stations
- Other infrastructure
 - Etching needed (e.g. outside cleaning)
 - designated 800°C furnace
 - Sufficient pump stations, etc.
- Opional
 - Dry-ice cleaning
 - Needs feasibility demonstration

Layout of Preparation Facility

Implementation of a Facility

Location Alternatives:

- Makes sense to site this at existing TTF infrastructure here at DESY.
 - Additional manpower would be a pre-requisite
- CERN
- Available (needs check):
 - 2K cryogenic-infrastructure
 - Vertical Teststands
 - Module Teststands (How many?)
 - Single-cell preparation infrastructure?
 - Surface science department in-house
 - Manpower ?
- Needed
 - Infrastructure for multi-cells with redundancy
 - RF Power

Manpower

- Qualified manpower is a critical issue on all levels (engineers, technicians)
- How 'free' could this expertise be in 2008+?
- How much additional manpower could be made available?

Sketch of possible programme:

- Component design in framework of world-wide effort
 - Some design work might be finished by 2007 e.g. cryostat vessel
 - but this should not stop people stop from thinking about sub-components like magnet and cold BPM
- Details...

GoalsILC Cryomodule Design

- 4th generation module
 - Quadrupole in the center
 - Shorter cavity spacing
- Module assembly capability
- Module testing capabilities
- Prototyping of cryostat vessel in European industry
- Implementation:
 - Finish design work as collaboration of FNAL, INFN, DESY,...
 - ILC design finished in 2007?
 - Assembly of modules
 - Need a cleanroom for string
 - » Could use refurbished CERN cleanroom in SM18
 - » could be at TTF?
 - Test facility without beam
 - Could refurbish CERN infrastructure in SM18
 - Could be extension to XFEL module test hall, then use single module test stand for ILC
 - If Beam test is needed somewhere (e.g. HOM damping), could be just a probe beam.

High-quality cavity production and preparation including full-power test

- Cavity design
 - Goals:
 - Compact with shortened beam tubes
 - Cavity shape options
 - Standard
 - Low-Loss
 - Implementation
 - ILC LL
 - complete design available done at SLAC, DESY and others
 - Initial tests will be available
- Material options
 - Goals:
 - Large-grain or single-crystal
 - Standard material
 - Implementation
 - Built 30 ILC-cavities and test

Cavity preparation

High quality cavity production ctd.

- Goals
 - Improve preparation process
 - Improve EP (is a must...)
 - Etching needed (e.g. outside cleaning)
 - Improve Final cleaning
 - High pressure rinse (HPR)
 - » Online particle count integrated in drain water line
 - Dry-ice cleaning?
 - » Needs feasibility demonstration
 - Cleaning of parts
 - » Automation needed: screws used as example
 - Improved/novel methods of QA/QC
- Implementation
 - Setup of new infrastructure
 - » DESY: Independent of TTF
 - » CERN: partial refurbishment might be an option
 - Modular setup
 - » Institutes get responsibility for part of the process (HPR design, EP design etc.)
 - Redundant setup
 - » 2 x EP,
 - » 2 x HPR,
 - » 2-3 120 °C bakeout stations
 - designated 800°C furnace
 - Sufficient pump stations, etc.

High quality cavity program ctd.

- Cavity testing capabilities
 - Goals :
 - Low-power and high-power individual cavity tests
 - Implementation
 - DESY: Extension of XFEL infrastructure or use TTF
 - CERN: Make SM18 1.3GHz compatible
 - Minor work cryostats
 - Improve pumps for 2K ?
 - RF system esp. for Pulsed operation
 - » obtain MBK from America

Cavity Auxiliaries

- TTF-III coupler
 - Goals
 - Lower cost
 - Even faster processing
 - Implementation
 - Continue work at LAL Orsay
 - Full synergy with XFEL
- Compact Tuner design
 - Goals
 - Develop compact tuner
 - Including fast tuning (e.g Piezo)
 - Implementation
 - Blade tuner at INFN
 - Compact lateral tuner at Saclay ? needs confirmation

ILC magnet design

- Goals
 - Full design to ILC specs
 - Follow discussions on ILC issues
- Implementation
 - Continue work with CIEMAT
 - Acquire magnets in America?

ILC BPM design

- Goals
 - More compact re-entrant
 - Eventually integrated (closely attached) to quadrupole
- Implementation
 - Basic layout XFEL-like ?
 - XFEL Resolution insufficient for ILC
 - Continue CEA work
 - Need compact design

Time scales:

->2008

- Time scale would have this infrastructure running parallel to XFEL cryomodule production, which could provide 'mass production' feedback for foreseen ILC program.
- some of the design work will be done until end 2007 by ILC worldwide
- setting up of preparation infrastructure is most time-consuming
 - if parts of TTF infrastructure can be used the cavity preparation can be started earlier
 - at CERN the adaptation of the infrastructure needs to be cross-checked but should be rather straight-forward

Money Scales

(Warning: My Guess!)

- potential amount 30 MEUR (greenfield site)
- Collaborations will probably still require to support 50% of the activities.
- Budget would be allocated for

•	New cryostat vessels)	
	Up to 3 modules	}	6 MEUR
•	new cavities (>30)	J	

- auxiliaries
- new infrastructure

- RF	2 MEUR
Cryogenics	
» Plant	5 MEUR
» Cryostats +low-power RF	5 MEUR
Cleanroom (min.2 HDs)	4 MEUR
» Assembly tooling	1 MEUR
Chemistry	3,5 MEUR
» EP (2 benches)	
» Etching	
Furnace min.800°C	1 MEUR
» Extras	5 MEUR
manpower (new people)	

For Discussion...

- I see two possibilities for such a facility
 - CERN refurbishment
 - Some construction work needed
 - DESY would need new construction and significant manpower
 - Cavity testing might start earlier by using existing facilities
- A participation by collaborating institutes are hardware (e.g. EP system) and/or people
 - Possible integration of industry
- Other cavity shapes (e.g. for protons) could be integrated in case treatment modules are supplied
 - Use of water and chemical plant is straightforward

Conclusion

- Such a facility is needed
- CERN is a clear option as some (costly) part of the infrastructure is there
 - Not to be forgotten: Some Know-how as well!
 - DESY can be an alternative
- Evaluation is needed on who can provide what