Status of PFA at Iowa

Mat Charles (U. Iowa) Tae Jeong Kim (U. Iowa)

Outline

- Recap of the last two talks (July 16, 23)
- Changes this week
- Summary of current performance
- Resolution as function of $|\cos(\theta)|$
- Leakage and the muon system

Recap (I)

July 16th:

SiD PFA status

- Lots of changes to the PFA recently -- most importantly:
 - Short second pass to pick up cluster pieces missed in first pass. Currently using simple cone -- we can do better.
 - Smarter handling of shared hits (hit-by-hit, not en bloc).
 - Trying harder to find structure in hadronic showers
 - Addition to main clustering pass: as well as usual link types (MIP-MIP, MIP-clump, etc), link track seeds to clusters in tight cone downstream of showering point.
 - Share teeny clusters by cone from showering point as well as proximity.
 - Don't drop any hits.

sid01 HCAL: Digital RPC **sid01_scint** HCAL: Digital scintillator

 -0.02 ± 1.000

 $m_{1} = m_{1} + m_{2} = -10(\pm 276)$

Recap (2)

July 23rd:

- •Bugfixes in cone sharing/scoring algorithms (spotted by TJ)
- •Corrections to charged hadron calibration.
 - Previously, we treated all track/MIP-like segments as minimum ionizing -including charged secondaries.
 - Now only do this before the shower.
 - Also introduce rough angular dependence.
- •Correction to soft neutral output (avoid E<m)
- •Stable version of PFA (v0.32) now includes these fixes.

Recap (3)

Consider tracks for which:

July 23rd:

- Not part of a jet (i.e. don't overlap significantly with other charged showers)
- Reassignment is not needed (i.e. E/p passes cut before we get to the final step of reconstruction)
 We should expect them to look something like this:

Fix: Don't loosen E/p tolerance if $E>p+0.5\sigma$ already.

Track seed changes

One of the first steps in the PFA is to extrapolate the charged tracks to the ECAL surface & match them to "seed" clusters. What if that goes wrong?

• Sometimes, track connects to a cluster that is too big ($E_{clus} > p + 3\sigma$). Often due to high-energy track & photon close together. For example:

Track seed changes

One of the first steps in the PFA is to extrapolate the charged tracks to the ECAL surface & match them to "seed" clusters. What if that goes wrong?

- Sometimes, track connects to a cluster that is too big ($E_{clus} > p + 3\sigma$). Often due to high-energy track & photon close together.
- Before, we just absorbed that energy.
- Now: Try to break cluster apart. If that fails, give up & treat as pure (E/M) calorimetry to avoid undercounting.
 - Improvement needed: Do it energy-flow-style, using calorimetry for energy but track for direction.
- Mainly important for higher energies. Affects only a small fraction of tracks, so impact on resolution is not huge.
- We could be smarter about this (e.g. try to pick up MIP as it comes out of the back of the shower).
- Another change: If track connects to leftover hits from a DTreeCluster with structure inside, try connecting to that structure instead.

Other changes

- Leftover hit clusters as track seeds:
 - Preliminary clustering step comes before track-cluster matching.
 - One class of cluster: the leftover hits of a DTree when structure is found inside it (e.g. MIPs, clumps, ...)
 - If track initially connects to those leftover hits, try instead to connect it to one of the pieces of structure.
- Switch from Steve's MIP cluster finder to Tae Jeong's
- Bugfix: One class of output charged particle (those that were seen in tracking system but didn't reach inner face of ECAL) had tracks omitted from the ReconstructedParticle output. Fixed.
- Fix: E/p check was being applied inconsistently.
 - For E<1 GeV, I generally fix σ to 0.7 GeV.
 - But sometimes it was just scaling as \sqrt{E} , and getting too small.

Performance table

Quoting mean₉₀ ± rms₉₀ in GeV:

	ZZ mass resolution (GeV)		qq200 energy resolution (GeV)		qq500 energy resolution (GeV)	
	sid01_scint	sid01	sid01_scint	sid01	sid01_scint	sid0 l
<mark>July 4</mark> (#297)	-0.92 ± 3.76 (ΔM/M=4.2%)	-0.87 ± 4.15 (ΔM/M=4.6%)	-3.45 ± 5.69 (ΔE_{jet} =40.6% $\sqrt{E_{jet}}$) (ΔE_{jet} =4.1% E_{jet})	-2.69 ± 6.32 (ΔE_{jet} =45.0% $\sqrt{E_{jet}}$) (ΔE_{jet} =4.5% E_{jet})	-15.37 ± 21.29 ($\Delta E_{jet} = 97\% \sqrt{E_{jet}}$) ($\Delta E_{jet} = 6.2\% E_{jet}$)	-14.91 ± 24.07 ($\Delta E_{jet} = 109\% \sqrt{E_{jet}}$) ($\Delta E_{jet} = 7.0\% E_{jet}$)
July 23 (#329)	+0.36 ± 3.56 (ΔM/M=3.9%)	+1.34 ± 4.04 (ΔM/M=4.4%)	-0.99 ± 5.20 (ΔE_{jet} =36.9% $\sqrt{E_{jet}}$) (ΔE_{jet} =3.7% E_{jet})	+1.02 ± 5.82 (ΔE_{jet} =41.0% $\sqrt{E_{jet}}$) (ΔE_{jet} =4.1% E_{jet})	-6.08 ± 19.07 (ΔE_{jet} =86% $\sqrt{E_{jet}}$) (ΔE_{jet} =5.5% E_{jet})	-3.08 ± 21.55 ($\Delta E_{jet} = 97\% \sqrt{E_{jet}}$) ($\Delta E_{jet} = 6.1\% E_{jet}$)
Track seed changes (#347)	+0.61 ± 3.57 (ΔM/M=3.9%)	+1.66 ± 4.02 (ΔM/M=4.3%)	-0.38 ± 5.23 (ΔE_{jet} =37.0% $\sqrt{E_{jet}}$) (ΔE_{jet} =3.7% E_{jet})	+1.59 ± 5.79 (ΔE_{jet} =40.8% $\sqrt{E_{jet}}$) (ΔE_{jet} =4.1% E_{jet})	-5.90 ± 19.08 (ΔE_{jet} =86% $\sqrt{E_{jet}}$) (ΔE_{jet} =5.5% E_{jet})	-2.76 ± 20.94 (ΔE_{jet} =94% $\sqrt{E_{jet}}$) (ΔE_{jet} =6.0% E_{jet})

Track seed changes affect only a small fraction of showers -- effect is in the noise. Helps for RPCs at 500 GeV, though.

Angular variation

Plotting resolution (expressed as rms₉₀ / \sqrt{E}) vs cos(θ):

Resolution gets completely lousy for $cos(\theta) > 0.975$. Zoom in on the rest...

Angular variation

Pandora comparison

Interesting -- he doesn't see the same dip for $\sqrt{s}=500$ GeV. Perhaps LDC00Sc is already deep enough that all showers are well-contained?

- The longitudinal depth of LDC00Sc is 5.4 λ in the barrel and 7.1 λ in the endcaps (summing ECAL & HCAL)
- The longitudinal depth of sid01 is roughly 4.5 λ for both, I think.

Almost all events have some muon system hits. Check resolution separately for events with <20, >=20 hits...

Resolution vs Muon hits

Quoting energy sum mean₉₀ ± rms₉₀ in GeV:

qq500	<20 muon system hits	≥20 muon system hits
sid01 RPC HCAL	+1.55 ± 17.36	-9.46 ± 23.97
sid01_scint Scintillator HCAL	-1.76 ± 15.26	-13.09 ± 22.46

As expected, resolution is much worse when a lot of energy leaks out of the HCAL into the muon system. Could we recover this energy?

How many different particles contribute?

Looking at MC truth for a subsample of qq500 events (sid01, RPC HCAL)

Mean of only 1.0 particle per event contributing >4 hits in MUCAL. So we do have a shot at pattern-recognition in MUCAL. Hard part will be associating the right punch-through shower with MUCAL hits. (Can get resolution of O(20-30cm) trivially from track, but that won't be good enough.)