

Calorimeter for ILC

David Bailey University of Manchester – For the CALICE Collaboration

CALORIMETERS FOR THE ILC

David Bailey, University of Manchester

PROJECT GOALS

From this...

THE PHYSICS WE WANT TO DO

Need Boson Tagging	Multi bosons ZH WW ZZ ZHH ZZZ ZWW etc but also tau decay reco Best use of the lu		Multifermions + Boson(s) e^+e^-H , e^+e^-Z vv H, $vv ZttHe v Wvv WW$, $vv ZZttbar in bbar WWonstruction for SUSY, CP$		ts
Z to ℓ+ ℓ- qq (jets)	BR	<mark>₩ to</mark>	BR	H(120,SM) to	BR
	10%	ℓ [±] ν	32%	ℓ ⁺ ℓ ⁻	<15%
	70%	qq' (jets)	68%	qq(jets) ,WW,ZZ	>85%

JET ENERGY RESOLUTION

× Boson ID improves if $\sigma_{\rm Dijet\,Mass} < \Gamma_{\rm Boson}^{\rm Tot}$ + Translates to jet energy resolution of ≈30%/√E at the Z mass

David Bailey, University of Manchester

TECHNOLOGY

***** All calorimeters designed for particle flow + High spatial granularity + Integrated electronics on detector wherever possible × ASICs mounted on active material × Silicon PMs/MPPCs mounted on scintillators + Different technologies being prototyped × Analogue/Digital devices × All optimised for excellent position resolution

CALORIMETER PROTOTYPES

- × Electromagnetic Calorimeter

 + Silicon-Tungsten
 × MAPS Option
 + Scintillator-Tungsten

 × Hadronic Calorimeter

 + Scintillator with Analogue Readout
 + RPC and MICROMEGAS Digital HCAL Concept
- Coordinated test beam programme to combine different technologies at the same time and extract meaningful physics

David Bailey, University of Manchester

ELECTRONICS

- Requirements for electronics
 - + Large dynamic range
 - + Auto-trigger on 1/2 MIP
 - + On-chip zero suppress
 - + Front-end embedded in detector
 - + Ultra-low power × « 25µW/ch × Power Pulsing

SILICON-TUNGSTEN ECAL

× Highly granular calorimeter + Absorber × 30 layers of tungsten Module * 1.4,2.8 and 4.2mm thick FLC_PHY3 + Active Element ASIC × 30 layers of Si diode pads * 1cm² * 9720 channels

SILICON-TUNGSTEN ECAL

MAPS OPTION

SCINTILLATOR-TUNGSTEN ECAL

× Sampling Calorimeter + Tungsten Absorber + Scintillator Active Material × Strips 1cm wide, 3.5mm thick * 3 different configurations ***** WLSF readout × Each strip read out by MPPC **×** Put into DESY Test-Beam in 2007 + 26 Layer device

SCINTILLATOR-TUNGSTEN ECAL

ANALOGUE HCAL

- Scintillator tiles with embedded wavelength shifting fibres
- × Multi-pixel Geiger mode

ANALOGUE HCAL

× Operation verified using positron beam

16

ANALOGUE HCAL

- **x** Response to Hadron
- Comparing to Geant hadronic models
- Example
 + Depth of maximum c shower in detector
 - 0 10 20 30 40 50 60

DIGITAL HCAL

 Trades resolution on a small number of cells (towers) in traditional calorimeters with low (one-bit) resolution on a large number (~10⁷ – 10⁸) of cells. Not using scintillator (neutron sensitivity) allows smaller pad sizes.

DIGITAL HCAL

DIGITAL HCAL

FUTURE PROGRAMME

× EUDET

+ European framework 6 project
 × Development of physics technological prototypes
 × Large-scale detectors
 × Associated next-generation readout systems
 × HCAL 1m³ prototypes

David Bailey, University of Manchester

NEXT GENERATION DAQ

<image>

 Prototypes using FPGA developments boards with some custom daughter boards

Event building/

SUMMARY

× Lots going on + Very active test beam programme × 2008 running at Fermilab underway now + Many different technologies × Analogue/Digital devices × Embedded electronics × All have potential to deliver a working particle flow calorimeter for an ILC experiment **x** Expect the results of new test-beam analyses soon