Eight versus twelve, and in between?

Henri Videau
Laboratoire Leprince-Ringuet Ecole polytechnique, CNRS/IN2P3 Henri.Videau@in2p3.fr

A certain number of issues distinguish 8 and 12
as pointed out by Tohru

The HCAL depth
The interface TPC - ECAL
The overlap between adjacent barrel module
The space for front-end
The homogeneity of the ECAL depth
The engineering

8 staves 13.2 cm

9 staves 10.3 cm
3.9 HCAL layers

10 staves 8.2 cm
3.1 HCAL layers

Henri Videau LLR-École polytechnique

11 staves 6.8 cm
2.5 HCAL layers

12 staves 5.6 cm
2.1 HCAL layers

16 staves 3.1 cm
1.2 HCAL layers

Henri Videau LLR-École polytechnique
ILD-MDI meeting August 2

It is trivially clear that the circle is better approached by a dodecagon than by an octagon.

The coil cryostat imposes a circular form for the outer part of the Hcal, easily adjustable.

If cylindrical, the TPC could favour a dodecagon.

HCAL depth

From the current MOKKA version for the analogue HCAL

Number of interaction lengths, normalised to the mean (6.75), in the calorimeter (Ecal+Hcal) as a function of φ

HCAL interaction length
6.74

We loose about 10\% in the corner of the octagon, only 5 for a dodecagon
correction factor for integration over the barrel: 1.14 which gives a mean number of interaction lengths of 7.7

From the current MOKKA version for the "digital" HCAL

Number of interaction lengths, normalised to the mean (6.75), in the calorimeter (Ecal+Hcal) as a function of φ

The space between calorimeter and coil is too small in Mokka, the mean interaction length is similar to the analogue case

The main advantage of the "digital" structure is that the electronics is at the periphery in R and does not interfere with the gap between barrel and end-caps.
This permits to reduce to a minimum the space in the overlap.
See my presentation in Valencia 2006
"Few considerations on the design
of the electromagnetic calorimeter"

Under the assumption that the TPC field cage is just in front of the Ecal, does the shape of the Ecal hamper the measurement of the tracks?

For a circular TPC the precision willl depend only on R.
For a given radius, an octagonal TPC may improve.

In fact you trade part of the momentum accuracy for the depth of the Hcal !

On the "dead zone".

The relative importance of the dead zone is the ratio of the green area on the pink one

$$
\begin{array}{lll}
\text { for the eight-fold solution } \alpha=\pi / 8 & 5.5 \% \\
\text { for the twelve-fold solution } \alpha=\pi / 12 & 2.3 \%
\end{array}
$$

But the dead zone is also linked to the TPC outer wall and the clearance; taking optimistically 3 cm this dead zone corresponds to 3.2% for a radius of 185 .

Note that the TPC in our drawings is octagonal

Interface TPC - ECAL
with a rounding by 50 cm the dead zone is reduced by a factor > 10

Henri Videau LLR-École polytechnique
ILD-MDI meeting August 2

Overlap between adjacent barrel modules

For a radius of 185. and an ECAL thickness of 18.5 the overlap region amounts to

$$
\begin{aligned}
& \text { 14.6\% } \\
& \text { 33.fold } \\
& \text { 8-fold }
\end{aligned}
$$

how harmful is it?
dead material in overlap in $1 / \tan \alpha$
1.7 times more in 12
but aluminium?

Overlap between adjacent barrel modules

Using two different thicknesses makes it more awkward

see drawing

but better resolution at low energy, better for counting
worse at high? NO

Did anyone observe an effect in the simulation?

Overlap between adjacent barrel modules

The ECAL corner as seen in MOKKA.

There is a tiny angular region where photons cross only the thin sampling

Overlap between adjacent barrel modules

By going from 2.8 to 2.1 in the first half we expect to improve at most by 15%.
 we do

From Monte-Carlo (Valencia)

Energies (GeV)	0.2	0.5	2.	5.	10.
$\Delta \mathrm{E} / \mathrm{E} 30 \times 2.8 \mathrm{~mm}$	0.365	0.009	0.230	0.004	0.130
$\Delta \mathrm{E} / \mathrm{E} 20 \times 2.1+10 \times 4.2 \mathrm{~mm}$	0.295	0.008	0.2120 .004	0.1120 .003	0.0840 .002
0.057	0.050 .002	0.0530 .001			
improvement	$24 \pm 6 \%$	$8 \pm 4 \%$	$16 \pm 6 \%$	$14 \pm 6 \%$	$8 \pm 6 \%$

For the same total thickness, the same number of X0 the resolution is systematically better with a finer sampling in front. The efficiency also!

It is clearly valuable to keep two thicknesses but the overlap is more awkward

The scintillator case in the LDC frame

Remark

If we want to keep the same number of X0 and the same envelope (17 cm)
taking 2 mm of $\mathrm{Sc}+2 \mathrm{~mm}$ read-out +0.6 mm carbon $=4.6$
n being the number of W layers and x the thickness of one

$$
\begin{aligned}
& n \mathrm{x}=24 * 3.5 \mathrm{~mm}=84 \mathrm{~mm} \\
& \mathrm{nx}+(\mathrm{n}+1) 4.6=170 \mathrm{~mm} \\
& \mathrm{n}=18 \text { and } \mathrm{x}=4.7 \mathrm{~mm}=1.3 \times 0
\end{aligned}
$$

The space for front-end

The total thickness of Ecal is 185 mm including today a back plate of 15 mm We consider leaving 30mm between Ecal and Hcal for rails and support, cooling, power, signal

The volume usable for front-end is 45 mm thick and the cards being at 45° can extend up to 60 mm

It seems reasonable and the EUDET module is made accordingly

But the 30 mm , or the 15 mm plate, may end up thinner!

From the current drawings of he EUDET module

Henri Videau LLR-École polytechnique
ILD-MDI meeting August 2

Beware! the devil is in the details

On the side opposite to the front-end there may be caps to held the slabs

On the front-end side the slabs contain an integer number of cells (5 mm)

The homogeneity of the ECAL depth

It is clear that, out of the overlap, the homogeneity is entirely due to the angle between the incident particle and the normal to the calorimeter.
The apparent thickness of the calorimeter varies like $1 / \cos \alpha$. At $\theta=90^{\circ}$ the azimuthal variation is from d to $\mathrm{d} / \cos \alpha$.
Solution 8 : 8.2% max
Solution 12: 3.5\% max
This effect is dominated by the overlap effect, see plot $\pm 7 \%$

But, does it harm?
anyway it is totally negligible compared
 to the effect in $\theta: 63 \%$

The engineering

Both types of modules have been looked at by M. Anduze he is writing a LC note.

ECALS-3r				
	$0{ }^{\circ}$	45°	90°	$500<+$
$\begin{gathered} \text { déformation } \\ \text { (mm) } \end{gathered}$	0,076	0,119	0,125	
Tsai hill	4,10E-03	2,07E-03	7,14E-04	-
MoS (mini)	4,34	6,51	11,79	
Mises (Mpa)	2,7	7,8	2,3	

ECAL12-2r				69				
	$\boldsymbol{0}^{\circ}$	$\mathbf{3 0 ^ { \circ }}$	$\mathbf{6 0 ^ { \circ }}$	$\mathbf{9 0}^{\circ}$				
déformation (mm $)$	0,126	0,176	0,189	0,185				
Tsai hill	$8,35 \mathrm{E}-03$	$8,22 \mathrm{E}-03$	$4,29 \mathrm{E}-03$	$4,89 \mathrm{E}-03$				
MoS (mini)	2,74	2,77	4,22	3,89				
Mises (Mpa)	3,7	5,3	7,8	8,3				

8 is stiffer but both acceptable

1 mm thick

1 mm thick

ILD-MDI meeting August 2

The engineering

Henri Videau LLR-Êcole polytechnique

The engineering

> Remarks:
> for 8 a module weighs 2.1 T for 12 a module weighs 1.4 T does not make it really easier

You may prefer to build and insert 40 modules rather than 60

The engineering

The case for the "digital" HCAL

With a 12 symmetry the design is much more awkward

The denomination "digital" is improper, the mechanical solution being fine also for the analogue HCAL it is a historical point.

Conclusion

Both solutions seem feasible with quite marginal advantages in one or the other.

> Some personal preference for eight in view of the overlap

The best argument for 12 being probably the HCAL depth

In view of the engineering and prototyping investment our preference would be to use 8 as a baseline for the Lol with the symmetry 12 as an option?

