

Progress towards Yoke Design

Uwe Schneekloth DESY

Towards Iron Yoke Design

- Need a somewhat realistic mechanic design of iron yoke in order to study stability/stiffness of yoke
 - With and without magnetic field
 - Opening and closing of endcaps
 - Push/pull

Progress report

Iron Yoke - Thin vs. Thick plates

Thin iron plates (LEP, H1, ZEUS)

- Is momentum measurement necessary?
 - Done by TPC
 - Might be useful to improve muon purity
- Lower momentum cutoff (mainly determined by calorimeter + coil thickness)
- Backing calorimeter/tail catcher
 - Depends on thickness of calorimeter and coil (5 Λ + 2 Λ)

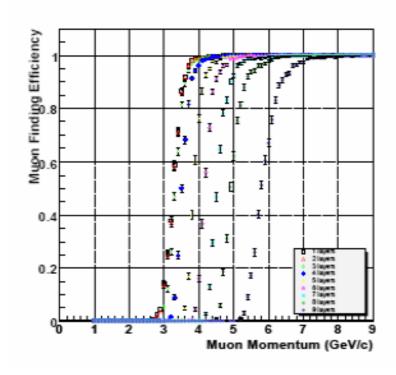
Thick iron plates (CMS)

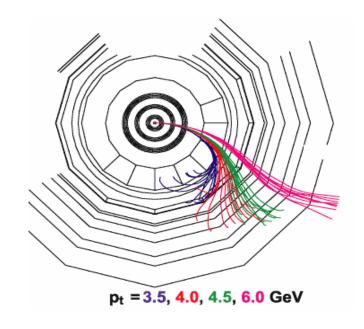
- 4 chambers sufficient for momentum measurement
- Much less muon chambers
- Precision position measurements easier
- Better mechanical stiffness
 - Defection due to high magnetic field
 - Push/pull without platform
- Less support structures (rips)
 - Less holes in muon coverage

Iron Yoke - Welded vs. Bolted Assembly

Welded assembly (H1, ZEUS)

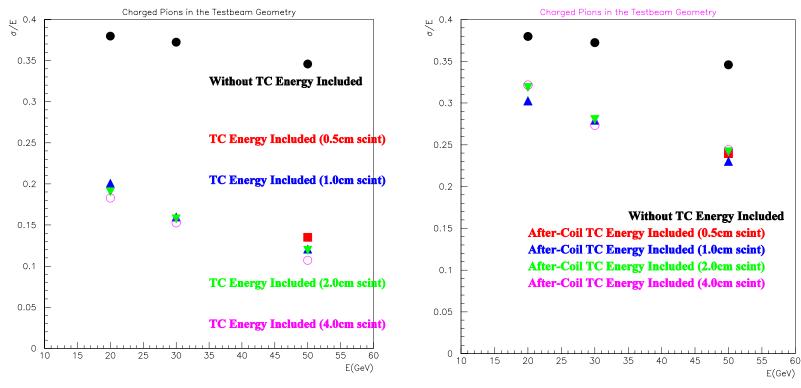
- Sections (octants, 12...) assembled and welded at manufacturer
- Sections very heavy (>100 t)
- Trial assembly at manufacturer difficult


Bolted assembly (CMS)


- "light" plates (<50 t)
- Trial assembly at manufacturer easier
- Easier to achieve high precision
- High precision not required for plates, only for connections
- Only machined at bolting points
- More vendors
- Transport and handling easier and cheaper

Iron Yoke – Thin vs. Thick plates

U. Schneekloth



CMS (4 T)
Only muons p > 4GeV reach
muon chambers

Tail Catcher

Calice test beam study 100mm thick absorber plates

N.Zutshi, NIU 2004 including material of coil

Preliminary conclusion: need about five 10cm thick iron layers

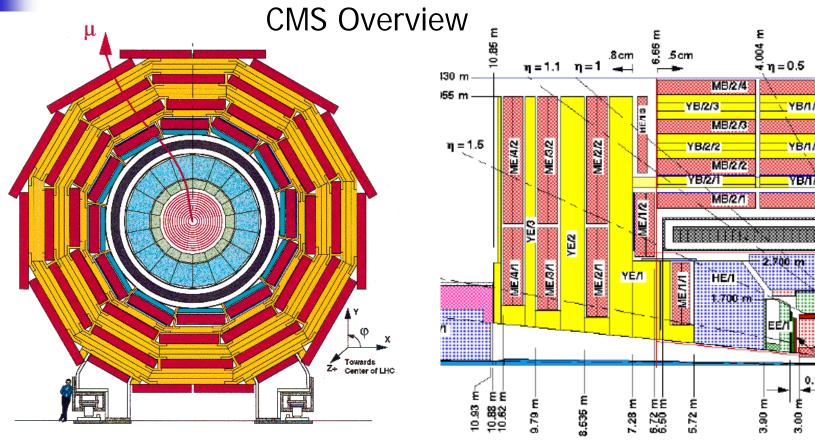
Forces on Iron Yoke

- 4 T solenoid → huge magnetic forces on endcap
- CMS total magnetic force on one endcap about 9000 t
- ILD
 - First, preliminary results of CST EM Studio calculations (A.Petrov) 24000 t.
- Very simple estimate of bending of 8m long steel plate with central force of 5000 t
 - Thickness 100mm (s = 4m) plate destroyed
 - Thickness 300mm s = 140mm
 - Thickness 600mm s = 18 mm (CMS observes 14mm)

Yoke Design Considerations

CMS yoke excellent design, coil very similar Why not simply copy the yoke design?

CMS


- Calorimeter 7 ∧ (+ coil 2 ∧)
 - One tail catcher layer outside coil in central area
- Total iron thickness only1.5m (endcap plates 600,600 and 250mm)
- Stray field at 1m 1.2kG
- "High" radiation
- Hall is not accessible during operation

ILD

- Calorimeter only 5 Λ
 - Need tail catcher => thin inner iron plates

- Stray field should be 200G at 0.5m
- Self shielding

Yoke Design Considerations

Thickness of iron plates (from IP)

Barrel: 295, 630, 630mm

Endcap: 600, 600, 250mm

Proposal for Yoke Segmentation

Barrel

- 4 100mm thick steel plates with 30mm gaps
- 4 thick (about 400-500mm, depending on total iron thickness) with 30mm gaps

Endcaps

- 5 100mm thick steel plates with 30mm gaps
 Assuming a sufficiently stable mechanical design can be obtained
 - Thin plates not really needed in the barrel EC transition region
- 4 thick (about 400-500mm, depending on total iron thickness) with 30mm gaps
- The exact size of the gap depends on the detector technology and whether different detectors will be used for energy and muon measurement

Shape of Iron Yoke

Barrel

- 4 100mm thick steel plates with 30mm gaps
- 4 thick (about 400mm, depending on total iron thickness)
 with 30mm gaps

Endcaps

- 5 100mm thick steel plates with 30mm gaps
 Assuming a sufficiently stable mechanical design can be obtained
 - Thin plates not really needed in the barrel EC transition region
- 4 thick (about 400mm, depending on total iron thickness)
 with 30mm gaps
- The exact size of the gap depends on the detector technology and whether different detectors will be used for energy and muon measurement

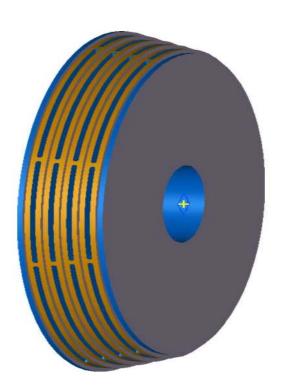
Shape of Iron Yoke

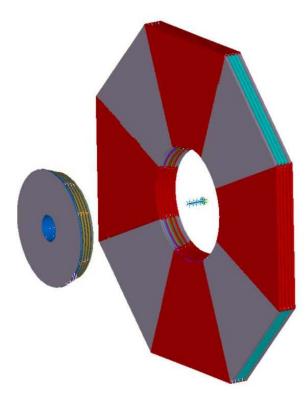
Octagonal vs. Dodecagonal (8 vs. 12)

- Should follow shape of calorimeter
 - Shower leakage and muon tracking easier
- Mechanical design

Prefer 12

- Individual sections smaller, weight ~2/3
- Bending of iron plates ~ 0.3 (circumference)
- Started on mechanical design of octagonal shape
 - More difficult case

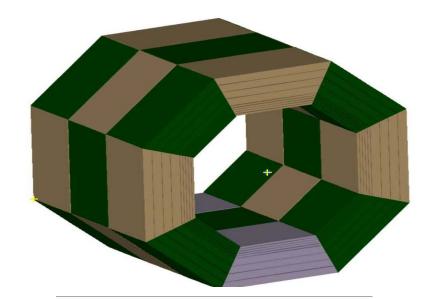

Endcap design more challenging than barrel design due to huge magnetic forces

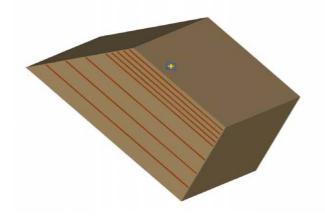

- Propose radial supports (rips) in radial direction for inner endcap section
- Tensile strength of support rips determined by welding seams or bolts
 - Looking into cast iron design

1

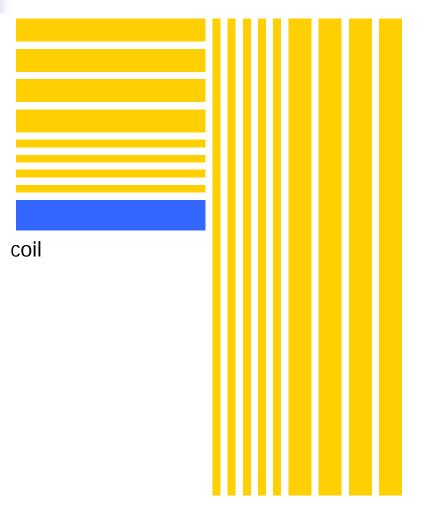
Endcap Design Proposal

Endcap cast iron proposal (R.Stromhagen)



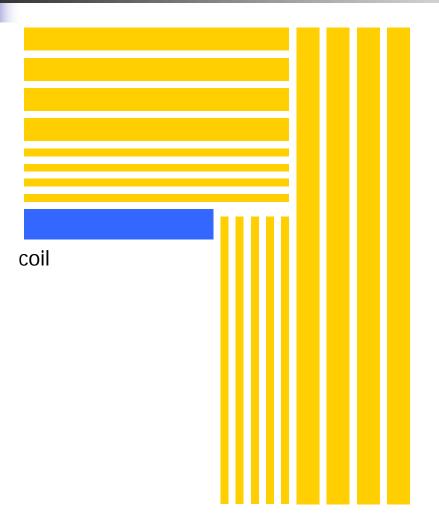

Very rough estimate of bending assuming central force of 5000t and unsupported diameter of 8m: 10 mm

Endcap Design Proposal



Only inner, thin plate endcap shown

Endcap Design Proposal


Fine (100mm) segmentation in barrel endcap overlap region not realy needed.

Problems:

- Mechanical strength of thin plates
- Installation and access of endcap detectors in case of radial rips

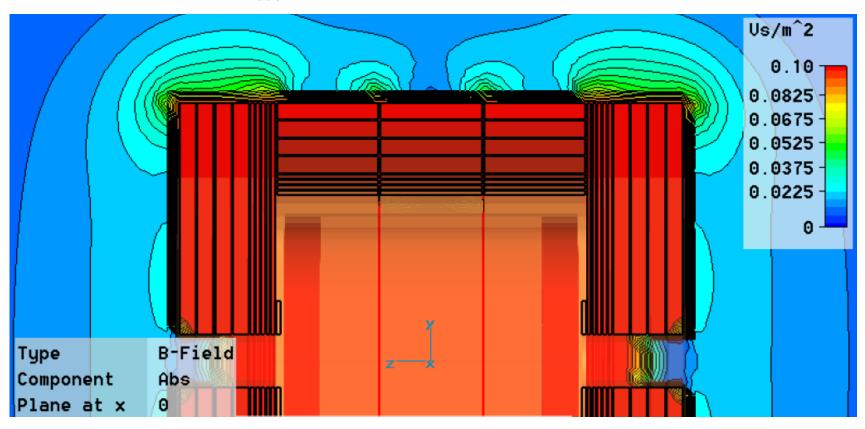
Endcap Design Proposal

Slightly longer barrel

- Better mechanical design of endcap
- Better installation and access of endcap detectors in case of radial rips

Preferred geometry

Magnetic Field Calculations

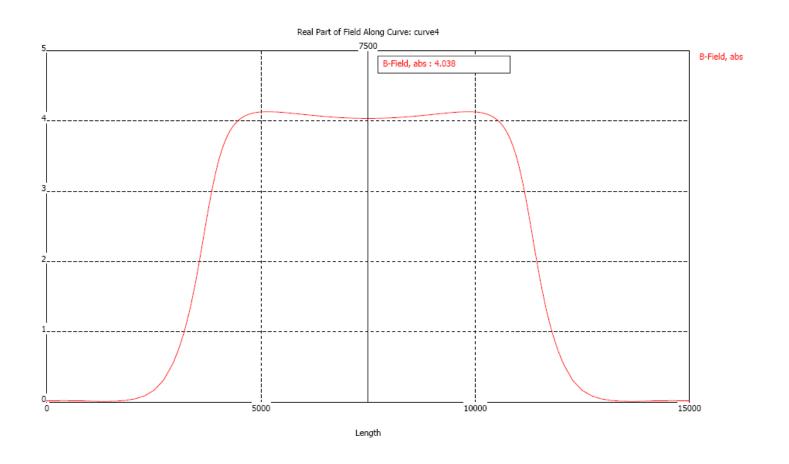

Recently started 3 D magnetic field calculations at DESY

- Determine total iron thickness to achieve stray field of 200 G at 0.5m
- Determine magnetic forces on iron yoke
- Programs being used
 - CST EM Studio (A.Petrov, B.Krause)
 First results available
 - ANSYS (C.Martens)
 First results hopefully this week

B Field Calculations

Recently started B field calculations at DESY

Coil:
$$r_{in} = 3.4 \text{m}$$
, $r_{out} = 3.75 \text{m}$, $I = 7.35 \text{m}$, $B = 4T$

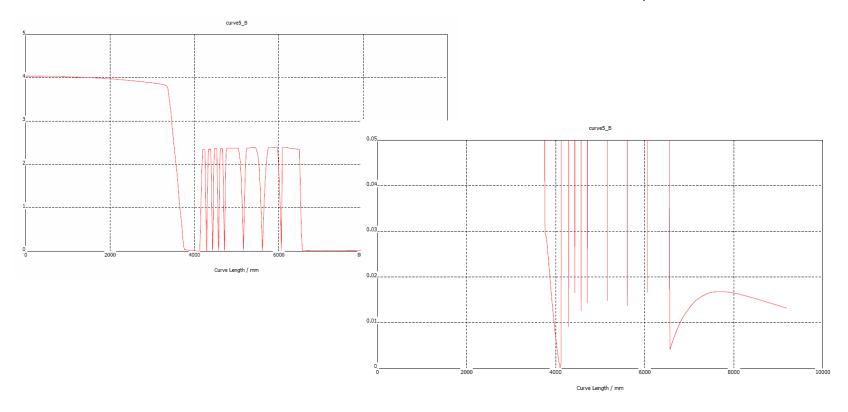


4

B Field Calculations

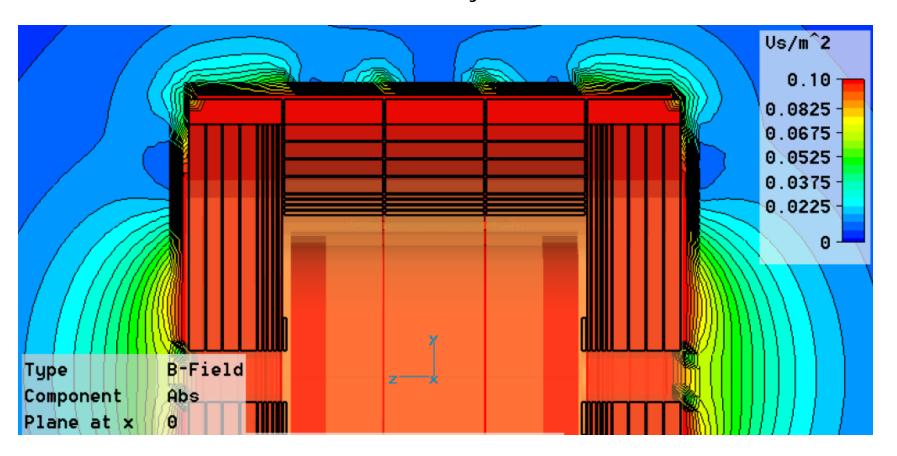
B field vs z

A.Petrov, B.Krause



B Field Calculations

A.Petrov, B.Krause


B Field Calculations

22

4

B Field Calculations

Added 60cm of iron to reduce stray field

B Field Calculations

Conclusion of first results

- Difficult to achieve 200 G at 0.5m
- Is 200 G really fixed?
- Adding lots of additional iron will be very expensive, will reduce available space when endcap is opened
- Should compare with recent simulations by O.Delferriere
- Argument for reducing field to 3.5 or 3 T

Conclusions

- Need a somewhat realistic mechanic design of iron yoke in order to study stability
 - With and without magnetic field
 - Opening and closing of endcaps
 - Push/pull
- Have to fix
 - Size of iron yoke
 - total iron thickness mainly driven by stray field
 - Segmentation of iron (thin, thick plates)
 - Yoke shape (8 vs. 12)
- Need detail simulations of magnetic forces in order to proceed with mechanical design (stress, bending,...)