

Mechanical dimensions

See Mathieu's talk

- 45° => 6 cm, cables, assembly margin
- About 3.5 remaining
- DIF will include what is put on the adapter board (EUDET)
 - Higher density of components
 - Less components : optimizations

ILD

DIF is part of last ASU of the SLAB Allowed space : 6-7 x 3 x 0.6-0.8 cm3 ! Small amount of components allowed

Quite no place for cabling : DAQ + HV + GND

LDA has to receive 30 cables (45 cm linear)

Service space is mostly taken by cooling

Space for HV and GND ?

Space for LDA: 15x15 cm2 + connectors and cable curvature, holes (small!) for cables below rails

CI,

divided

Initial view: Cables per tower

- 1 HDMI cable /DIF
 - Maybe DIF-DIF cable (no room, see later)
 - Diameter from 7 to 10 mm
 - Flat HDMI 4mm x 18 mm exist
 - Short (less than 1 m)
- Common HV
- Common LV
- => 3 cables / tower

There are 5 towers per module, 5 modules per stave, 8 staves for the barrel.

Concentrated on LDA,

LDA-ODR = Gb Eth

=> 5*5*8 = 200 cables of each sort for the barrel

For a very first approximation, let's assume that the control/data cable is 0.5 cm², LP cable is 1.5 cm², and HV cable is 0.5 cm² (TBC!!)

=> 2.5 cm2 * 200 = 0.05 m2

Appling a security factor of 2 (lost spaces, curvature, trays, misalignment, etc...): => 1250 cm2 spread around the barrel

If both side of each stave is used: 80 cm2 at both ends of a stave

5

DIF-LDA Cables

• 1 HDMI cable

4mm x 18 mm. Improved flexibility 10.2 GB/sec (V1.3b standard) up to 12m.

- 1 HV (bus topology)
- 1 LV (bus topology)

LV Power supplies: optimization or not...

- 3 kW FE-full det., 30*5*5*8*1.2 DIF, 3V (2.5 V techno)
 - 150 mA/DIF , 4.5 A/tower
- 10m, 1 cm^2 : R=2 mOhm, Pj=40 mW/tower
 - 10 W / detector Local distribution: 1m : 4 mW/tower = 1 W/det.
- 150 mA/DIF: use of a wire of the data cable
 - No more LV cable from LDA to DIF, individual connection
 - AWG24 : 1m=800 mOhm = 20 mW (120 mV loss), 150 W (det.)
 - Need 10 mF cap on DIF ("battery")
 - Single LV+ cable to serve a STAVE or a MODULE (DC-DC conv.)
 - STAVE 36V, 10 staves, 4 cm2: 8A/stave, 30 mW + DC-DC loss (x3)
 - MODULE 12 V, 5 towers, 2 cm2 : 5A/module, 25 mW + DC-DC loss (x3)>

Global distribution: 10 m: 1-5 W

- ⇒Local LV cables + global LV cables and DC-DC on LDA
- \Rightarrow 6 W, 100 cm2 (focator 3 gained)

CNTS In2n3

7

Cable path

How to go outside: See Mathieu's talk

CALICE/EUDET module: confidence in ECAL integration

Electronics inside

SLAB assembly

Sensors

For ILD, some remaining issues (not all listed)

Cabling

Power

Room for DIF

Extra length of the end cap SLAB: signal integrity

Try to derivate information from CALICE/EUDET module do as if it was ILD

Backup

10

Assembly/Disassembly

- Cable path allowing the assembly of the detector in the right order
 - Remove the 2 end caps
 - Slide the TPC
 - Slide the modules

Before | after

