IP Beam Size Tuning

- Glen White, on behalf of IP tuning task group (SLAC, LAL, CERN, KEK, Tokyo, IHEP, LAPP, STFC...)
- 7th ATF2 Collaboration Meeting, Dec 2008

- Summary of work and objectives
- Summary of simulation-based studies
- Plans

Objectives

- Formulate and test in simulation the procedure for achieving the goal vertical waist size at IP.
- Include as much realism as possible, starting with expected beam conditions after installation and alignment.
 - Standardise error conditions for cross-code comparisons (use common initial seeds).
 - Include measurements where possible
- Compare multiple methods accross different codes
- Produce production code (flight-simulator based), simulation tested and ready for beam operations early in 2009.

Collaboration

- Strong collaboration across many labs/institutes.
- First informal group meeting, August at LAL.
- Webex meetings every ~3 weeks since- talks and minutes on ATF2 Indico site.
- Software and simulation details (common error set etc) shared on SLAC ATF2 Flight Simulator wiki pages.
- Common simulation seeds stored on SLAC ATF2 ftp server
 - Common accelerator description through AML
 - AML Parsers available and under development in Lucretia, PLACET, SAD, XSIF.

Simulation Studies

- Define realistic starting conditions (100 seeds)
 - Standard installation errors + EXT BBA, disp corr, coupling corr, FFS BBA
- Study performance of IP tuning on 100 seeds including dynamic errors.
- Check h/w limits not exceeded at any point.
- Study effect of dynamic errors on tuned machine.

Standard Error List

Co-ordinate system used here is right-handed, kon – rotation in x-y plane, pitch– rotation in y-z p

The reference ground motion model for ATF based on measured GM spectra on the DR floor is in t (also available as a standalone Matlab routine- to be provided here shortly).

Error Parameter	Error magnitude
x/y/z Post-Survey	200 um
Roll Post-Survey	300 urad
BPM - Magnet field center alignment (initial install) (x & y)	30 um
\ensuremath{BPM} - Magnet alignment (post-BBA, if BBA not simulated) (x & y)	10 um
Relative Magnetic field strength (dB/B) (systematic)	le-4
Relative Magnetic field strength (dB/B) (random)	le-4
Magnet mover step-size (x & y / roll)	300 nm / 600 nrad
Magnet mover LVDT-based trim tolerance (x & y / roll)	1 um / 2 urad
C/S - band BPM nominal resolution (x & y)	100 nm
Stripline BPM nominal resolution (x & y)	10 um
IP BPM nominal resolution (x & y)	2 nm
IP Carbon wirescanner vertical beam size resolution	2 um
IP BSM (Shintake Monitor) vertical beam size resolution	use attached data
EXT magnet power-supply resolution	11-bit
FFS magnet power-suppy resolution	20-bit
Pulse - pulse random magnetic component jitter	10 nm
Pulse - pulse relative energy jitter (dE/E)	le-4
Pulse - pulse ring extraction jitter (x, x', y, y')	0.1 sigma
Corrector magnet pulse-pulse relative field jitter	le-4

- Error list on wiki
- Also GM- ATF fitted Model
- Also include measured multipoles for final doublet, sextupoles and FFS bends.
- Also, detailed SM resolution simulation

Simulation Steps

- Use EXT correctors + BPMs (EXT FB) to get orbit through EXT.
- Use FFS FB to get beam through FFS.
- Correct Dy/Dy' in EXT using skew-quad sum knob.
- Correct coupling in EXT using coupling correction system.
- Use FFS FB for launch into FFS.
- FFS Quad BPM alignment using quad shunting with movers.
- FFS Quad mover-based BBA.
- FFS Sext BPM alignment using Sext movers and IP BPM.
- Sextupole mover tuning knobs to get final spot size
 - Vertical IP dispersion and Waist
 - <x'y> coupling
 - Higher order terms collectively through Sext rolls + dK.
- Also use EXT skew-quads to tune other coupling terms.
- No attempt to model EXT BBA yet (assume 10um RMS bpm-magnet center offset)
- No attempt to model any lattice matching (Ring EXT)

Beamsize After EXT Tuning and Steering/BBA etc

IP waist size before sextupole FFS tuning knobs applied (100 seeds).

Beamsize Measurement with BSM

 IP beam size not gaussian, Shintake monitor measures somewhere between RMS and core in this case.

SM Resolution

 Include simulated resolution capabilities of SM as function of beamsize for different laser crossing angles.

RMS vs. Core fit Results

Simulation results measuring core or rms IP size.

RMS/Core IP Size Correlation

- RMS vs. Core fit IP beamsize, for 100 seeds all tuning steps.
- Possible to predict core from rms near goal size, ambiguous further out.

Results with SM Resolution Data

Performance with SM resolution data.

Multipole Measurements

Magnet Name	Sextupole/ quad	Octupole/quad	10pole/quad	12pole/quad	20pole/quad
Tolerance (tightest)*	<0.03	<0.025	<~0.01	<0.05	<0.12
QD0 at 132.2 amps	0.0255	0.0052	0.007	0.036	0.0027
QF1 at 77.5 amps	0.0274	0.0058	0.0128	0.036	0.0027

- Measured multipoles exist for final focus bends, sextupoles and final doublet quads.
- All have minimal effect on beam size and tuning process other than those highlighted above.

Simulation Results with Multipoles

- Measured multipoles of final doublet have major impact on beam size (mainly due to sextupole component).
- Need to rematch optics for these conditions before tuning.

MAPCLASS Rematching

```
Settings found reach 38nm
         8.564015604
klsf6ff =
klsf5ff =
        -0.8108457023 !
         14.92233907
klsd4ff =
        -2.549000405
klsf1ff =
klsd0ff =
              4.367344565
sf1tilt = -0.0006514444947!
sd0tilt =
            -0.001280764859 !
klqf5ff =
              0.3760683487
klqd4ff = -0.2968406921
klqf3ff = 0.5531909983!
klqd2bff = -0.198360278
klqd2aff =
         -0.289811683
klqf1ff =
         0.7417848785
klqd0ff =
         -1.363966125
```

Rogelio re-matched optics with multipoles using mapclass

MADX Tracking with Rematched Optics

IP σ before and after rematching

Dodecapolar component remains in both planes. Do we need a dodecapole? octupole?

Vertical Survey Data

Use vertical alignment data from Sugahara-san.

Tuning Results

- MAPCLASS
 rematching
 improves
 performance even
 over case where
 no multipoles
 were added.
- Better vertical alignment has noticable effects in tail of tuning distribution
- 90% seeds tune <41-42nm
- 50% seeds tune<37-39nm

Tuning Time

- 90% Seeds tune < 1 day
- All results similar- < 45nm results noticeably better after MAPCLASS rematching

Effect of Horizontal Emittance

 12-pole in QF1FF causes vertical beamsize growth at IP with higher horizontal emittances.

Horizontal Emittance at ATF

- Only get simulated 3e-6 emittance at low charge. 1E10 charge implies min RMS y size of ~60nm.
- Get large RMS sigma_y due to high tail-population (will be measured by shintake monitor?).
- Need dodecopole magnet for tuning?

Input Parameters from Ring Extraction point

• Input match conditions used from Kubo DR simulation input (100 seeds), red line shows design model parameters.

Tuning Simulation Results

- Vertical waist size at Shintake IP compared with last simulation (left)
- IP vertical size in comparison with best achievable given input emittances (right)

Tuning Time

- Comparison of tuning time with previous simulation (left)
- Effect of adding finite mover speed (right)

Summary

- A lot of work from many people summarised here, more on wiki and Indico.
 - PAC paper abstract submitted
- Need to complete comparison studies (Lucretia [vs. MADX]? vs. PLACET)
 - Possible through AML parsers we now have.
- Then write control system tuning software
 - Liase with Shintake group for BSM readout.
- Simulation studies done also provide useful starting conditions for dynamic studies.