

Response of the CALICE Sí-W ECAL Physics Prototype to Electrons

Cristina Cârloganu

Clermont Ferrand

Aiming for three analysis papers using the 2006 data (first two to be merged eventually depending on the achieved timescales)

- Response to normally incident electrons (resolution, linearity, uniformity, ...)
- Shower radial and longitudinal development
- Tracking

- May 8, first draft submitted to the Internal Referees (K. Kawagoe, J. Cvach, F. Salvatore)
- May 15, a second draft is circulated
- May 21, a third draft is published, with the referee's approval as CALICE supporting note for CALOR 08 CAN-008
- September : restarting of the editorial review after inclusion of the MC
- October 10, green light from referees, paper submitted to the collaboration review
- October 24 --- deadline for comments !

1. Introduction

- ILC physics highlights
- ECAL performance goals
- Prototyping and testbeam

2. Experimental setup

3. The ECAL prototype

•Conclusion of the hardware paper on the detector performance(number of dead cells, noise level, stability)

4. Monte Carlo simulation

• simplified digitisation (Gaussian noise only, no dead cells, no correlated noise)

- 5. Selection of electron events
- 6. Performance studies
- 7. Conclusion

1. Electron selection based mainly on total energy deposit in ECAL

- 2. Rejection of the beam halo per run basis
- 3. Tracks outside the gaps
- 4. Showers well contained in ECAL
- 5. Rejection of electrons showering in front of ECAL

- 1. Electron selection based mainly on total energy deposit in ECAL
- 2. Rejection of the beam halo per run basis

- 3. Tracks outside the gaps
- 4. Showers well contained in ECAL
- 5. Rejection of electrons showering in front of ECAL

Electron Selection

- 1. Electron selection based mainly on total energy deposit in ECAL
- 2. Rejection of the beam halo per run basis
- 3. Tracks outside the gaps

4. Showers well contained in ECAL5. Rejection of electrons showering in front of ECAL

- 1. Electron selection based mainly on total energy deposit in ECAL
- 2. Rejection of the beam halo per run basis
- 3. Tracks outside the gaps

- 4. Showers well contained in ECAL
- 5. Rejection of electrons showering in front of ECAL

- 1. Electron selection based mainly on total energy deposit in ECAL
- 2. Rejection of the beam halo per run basis
- 3. Tracks outside the gaps
- 4. Showers well contained in ECAL

18. Rejection of electrons showering in front of ECAL

- 1. Electron selection based mainly on total energy deposit in ECAL
- 2. Rejection of the beam halo per run basis
- 3. Tracks outside the gaps
- 4. Showers well contained in ECAL
- 5. Rejection of electrons showering in front of ECAL

Energy (GeV)	particle	date	data statistics (kevts)	MC statistics (kevts)
6	e ⁻ , e ⁺	Oct	9.5	83.2
10	e ⁻ , e ⁺	Aug, Oct	43.1	80.3
12	e ⁻ , e ⁺	Oct	27.2	72.8
15	e ⁻ , e ⁺	Aug, Oct	51.4	70.3
20	e ⁻ , e ⁺	Aug, Oct	67.7	56.2
30	e ⁻ , e ⁺	Aug, Oct	42.3	55.2
40	e ⁻	Aug	22.9	67.8
45	e-	Aug	108.6	108.8

Performance - Sampling scheme

C Cârloganu @ CALICE Week, Argonne, 3.19.08

Status of the ECAL Analysis Paper

Performance: 30 GeV electrons

Performance: línearíty

Performance: línearíty

Performance: línearíty

