ATF2 IP Tuning Task Update

Glen White LAL/SLAC September 22 2008

- Goals and methods
- Tuning simulation results
 - Improved sextupole multiknobs
 - RMS vs. beam core fitting
 - Pushed IP beta configurations
 - Results with Shintake monitor resolution data
- •IP tuning task group meeting schedule

Tuning Goals and Methods

- Achieve ~35nm vertical spot size as measured by Shintake BSM
 - Have ignored horizontal in simulations so far, except that Sextupole knobs were orthogonalised to minimise extra x growth when reducing y.
- Construct multi-knobs to reduce from initial size ~<3um after initial alignment.
 - Sextupole x/y moves, final doublet dk, skew-quads (waist, dispersion, coupling)
 - Sextupole tilts / dk (higher-order IP terms)

Simulation Studies

- Define realistic starting conditions (100 seeds)
 - Standard installation errors + EXT BBA, disp corr, coupling corr, FFS BBA
- Study performance of IP tuning on 100 seeds (including dynamic errors).
- Check h/w limits not exceeded at any point.
- Study effect of dynamic errors on tuned machine.

Tuning Simulation Steps

- Apply standard errors to FFS + EXT
- Use EXT and FFS feedback for orbit correction
- Perform EXT dispersion and coupling correction
- Perform quad and sext BBA in FFS.
- Final IP tuning only using FFS sextupole multiknobs using x,y and tilt moves and strength tweaks.

Sextupole Multiknobs

	SD4 (x)	SD4 (y)	SF1 (x)	SF1 (y)	SD0 (x)
Waist	1	-0.0006	0.2903	0.0007	-0.0164
Dispersion	0	0.4459	0	1	0
<x'y></x'y>	0	-0.6363	0	1	0

- Knobs applied by asking for given dx/dy moves in sextupole BPMs.
 - Iterate through SD4/SF1/SD0 moves until beam passes through correct orbit within +/- sextupole step size (300nm).
- Iterate through linear knobs until no further improvement, then iterate through tilt + dk for all sextupoles and re-apply linear knobs and repeat...

Errors

co-ordinate system used here is right-handed, kon = rotation in x-y plane, pitch= rotation in y-z p

The reference ground motion model for ATF based on measured GM spectra on the DR floor is in t (also available as a standalone Matlab routine- to be provided here shortly).

Error Parameter	Error magnitude
x/y/z Post-Survey	200 um
Roll Post-Survey	300 urad
BPM - Magnet field center alignment (initial install) (x & y)	30 um
BPM - Magnet alignment (post-BBA, if BBA not simulated) (x & y)	10 um
Relative Magnetic field strength (dB/B) (systematic)	le-4
Relative Magnetic field strength (dB/B) (random)	le-4
Magnet mover step-size (x & y / roll)	300 nm / 600 nrad
Magnet mover LVDT-based trim tolerance (x & y / roll)	1 um / 2 urad
C/S - band BPM nominal resolution (x & y)	100 nm
Stripline BPM nominal resolution (x & y)	10 um
IP BPM nominal resolution (x & y)	2 nm
IP Carbon wirescanner vertical beam size resolution	2 um
IP BSM (Shintake Monitor) vertical beam size resolution	use attached data
EXT magnet power-supply resolution	11-bit
FFS magnet power-suppy resolution	20-bit
Pulse - pulse random magnetic component jitter	10 nm
Pulse - pulse relative energy jitter (dE/E)	1e-4
Pulse - pulse ring extraction jitter (x, x', y, y')	0.1 sigma
Corrector magnet pulse-pulse relative field jitter	le-4

- Error list on wiki
- Also GM- ATF fitted Model
- Also include measured multipoles for final doublet, sextupoles and FFS bends.

Done

Sextupole Mover System

- 5 Mover systems under FFS Sextupoles most important of all movers
- Need to move sextupoles during multi-knobs as quickly and accurately as possible.
- Need accurate move size vs. time vs. accuracy data to properly model (will be provided by JN)
- May need better motor drivers (faster) for these magnets (possible to salvage old nanobpm motor drivers maybe with help from DM)
- Use Sext BPMs as readback, not LVDTs (more accurate and faster).
 - Only faster if not have to do too much averaging.

Improved Tuning Results with Better Sextupole Tuning Knobs

- 2nm IPBSM resolution throughout tuning
- No simulation of sext mover time
- No GM during tuning or BPM or IP measurement averaging

IP Correlation Terms

 Median contributions to vertical beamsize from 100 seeds for linear + higher order correlation terms after BBA, linear knobs and all knobs.

IP Measurement Resolution

- Can now use calculated resolution data from Tokyo group for Shintake monitor vs. beam size
- Beneficial to integrate more than 1 IP measurement per tuning step (towards end of tuning when spot size is small)?
 - IP beam size growth over integration time due to various drifts must be small compared to improvement in measurement resolution.
 - Should not drive tuning time to be too long.

Shintake BSM Resolution Data

Results with IPBSM Resolution Data

Tuning performance using IPBSM resolution data.

Tuning Time

Tuning time with and without averaging of IP spot size measurements with IPBSM

Include Measured Magnet Multipole Components

- Measured multipoles of final doublet have major impact on beam size (mainly due to sextupole component).
- Need to re-match optics for these conditions before tuning.

Summary

- Results and timescale look promising.
- Tuning on RMS vs. beam core makes significant difference to results.
 - Maybe impossible to tune below ~35nm using RMS
- Things still to add to simulations
 - Sextupole mover realism
 - Dynamic effects during tuning
 - Check mover ranges
- Simulation results stored (100 seeds) for post-alignment and post-tuning cases on SLAC ATF2 ftp server (link from wiki). Formats supported: Lucretia & AML