RMS vs. Gaussian fit for Modeling ATF2 IP Beam Size

Glen White LAL/SLAC Sept 22nd 2008

Shintake BSM Simulation


```
< B_x^2 B_y^2 > = B^2 (1 + \cos 2\phi \cos 2k_y y)
```

φ = Laser beam crossing angle (174°) k_y = ksinφ

- Track beam through to IP (10k macro-particles)
- Scan interference pattern past beam +/- 2π over 90 bunches
- Form modulation pattern from overlap integral of beam with interference pattern
- Beam naturally jitters from tracking with simulated jitter sources
- Also simulate laser phase jitter by jittering phase of fringe pattern ~ 10nm

IP Measurement Process

- Can measure (in simulation) the beam size in different ways with different results (at 10% level).
- Shintake monitor measure ~rms value in simulations, should tune on RMS...
- If fixed relation between RMS and core (fixed shape beam profile), can infer core size maybe (more relevant quantity for ILC)...

Tuning Simulation Results

 Tuning results, performed using rms beamsize as tuning input, or gaussian core.

Measurement Comparison

- 100 seeds, core vs. rms beam size for all tuning steps
- Near target region- seems possible to predict core size
 +/- 2nm, similar to measurement resolution.