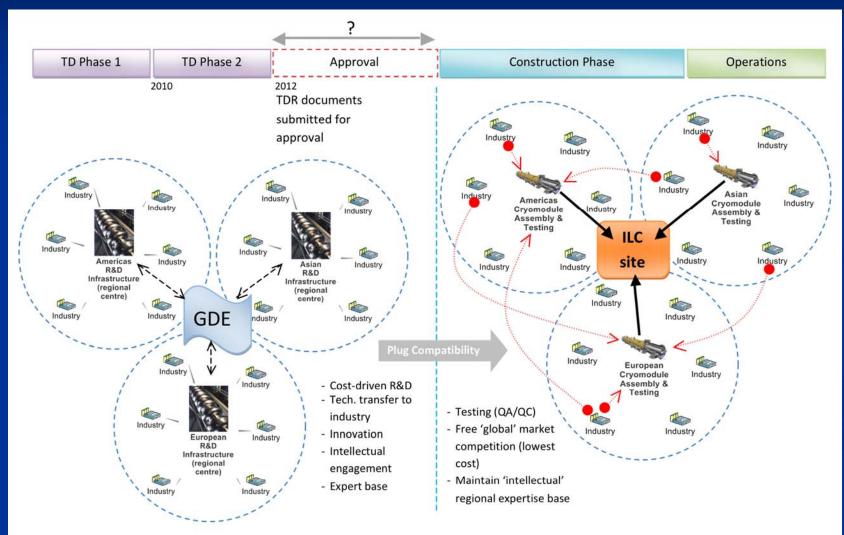
ILC-GDE SCRF Plug-Compatibility

- focusing on cavity package -

Akira Yamamoto for the Project Managers

To be presented at SCRF WebEx Meeting ,Oct. 1, 2008 And Ti be discussed at GDE-EC, Oct. 2, 2008

Basic Consideration


R&D Phase

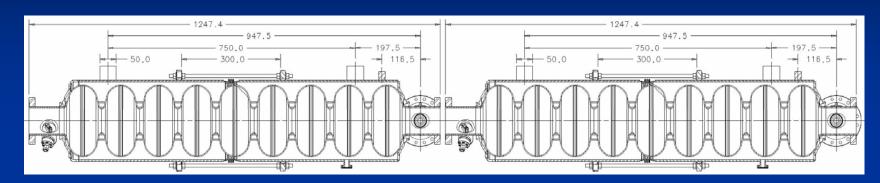
- Need to continue and encourage R&D effort to improve the "gradient" performance,
- "Improvement" comes from "some change", for example,
 - **Cavity Type:** Tesla, Low-loss, Re-entrant
 - Material: Fine-grain or large grain
 - Surface treatment: EP, Rinsing,
 - Tuner type: Blade, Jack, etc.,
 - Input-coupler: how to simplify the assembly

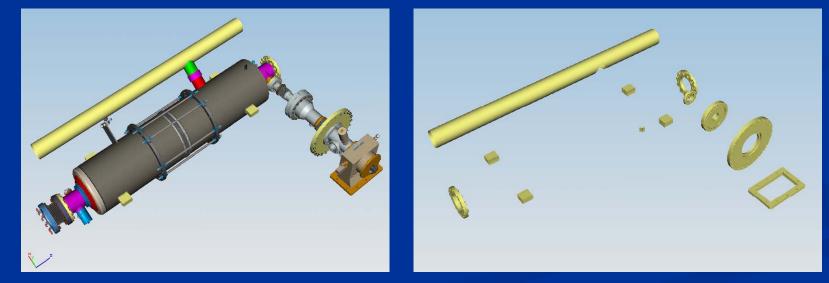
Construction Phase

 Need to keep multiple, regional participation and industrial competition

Global Cooperation with Plug-compatible Design and R&Ds

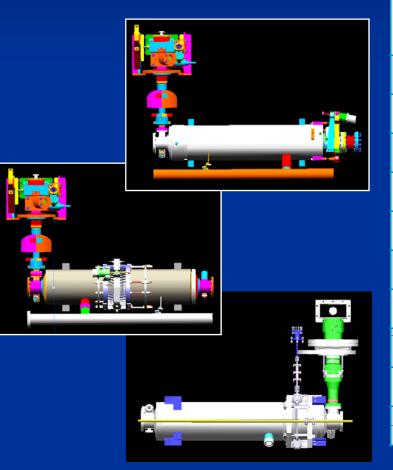
Intending the SCRF "plug-compatibility"


Cavity


- Status: in extended R&D stage to improve "gradient"
- Establish: unified interface conditions,
- Keep: "room" to improve field gradient performance,

Cryomodule

- Status: being ready for "system engineering"
- Establish: unified interface conditions,
- Intend: nearly identical engineering design
- But: need to adapt to each regional industrial constraints
- Need to study more" High Pressure Code"


Plug-compatibly of Cavities Important for Global Cooperation

Plug-compatible interface need to be established

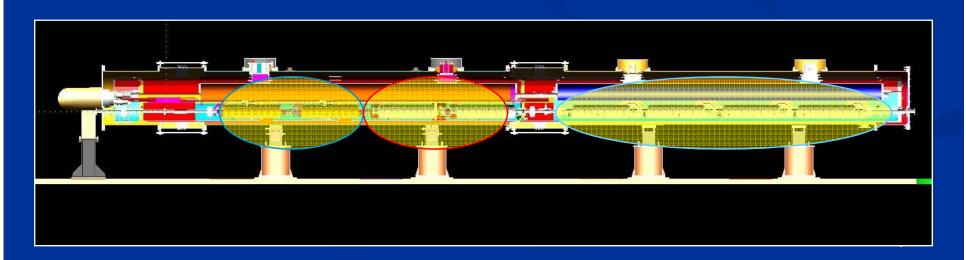
Plug compatible conditions at Cavity package (example)

Item	Can be flexible	Plug- compatibility
Cavity shape	yes	
Cavity Length		To be fixed
Beam-pipe Flange		To be fixed
Cavity support int.		To be fixed
Tuner	yes	
Tuner position		To be fixed
Coupler	Partly	Tunable
Coupler position		To be fixed
He vessel	yes	
H-line interface		To be fixed

Progress in "Cavity Compatibility"

	Being Fixed	Possible changes	Under discussions	
Length/pitch	1,247+bellows			
Beam-pipe flange - diameter - Gasket	- 78 mm - Al-hex		Helicoflex to be converted with bellows joint	
Input-coupler - z-location - warm-end flange	Upstream-end (for e-)larger flange	- Tunable mechanism	- Interface to cryomodule	
Tuner -z-location - maintenability	- Downstream end	Tuner type	- Access to motors	
He-vessel - Outer diameter - Support block - He-line interface	-Xxx mm -TBD - In: tuner-end, Out: opposit	Nb-SUS transition	Y = 0, or shifted	
Magnetic shield			Inside/outside He-v.	

Boundary Conditions


Conditions of cavity plug-compatibility

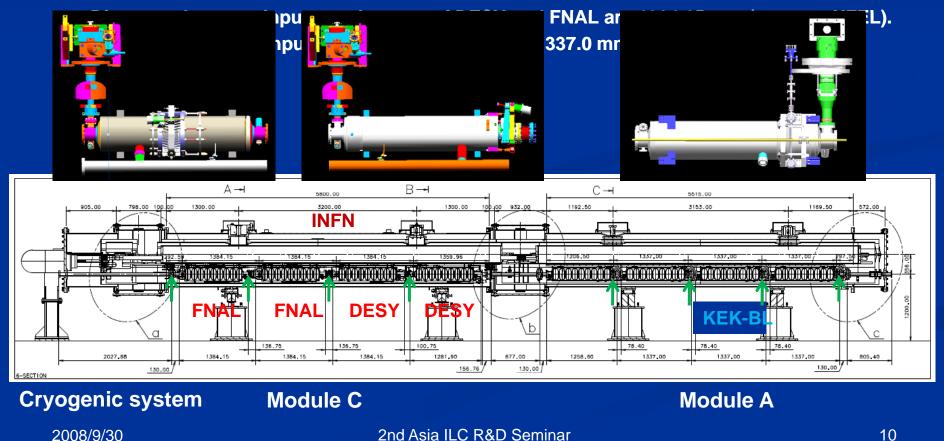
- One cavity-package is replaceable with other cavity even in one cryomodule,
- Cavity package design need to be optimized for easiest, best reliable assembly process during the installation into the cryomodule
 - Cavity-package is defined by the unit to be sealedoff in delivery to the site of ILC cryomodule assembly.
 - 9-cell cavity, end-strubure (coupler, HOM, etc), Hevessel, Tuner, interface to cryogenics line

Cavity and Cryomodule Performance Test with Plug Compatibility, in Global Effort

Cavity integration and the String Test to be organized with:

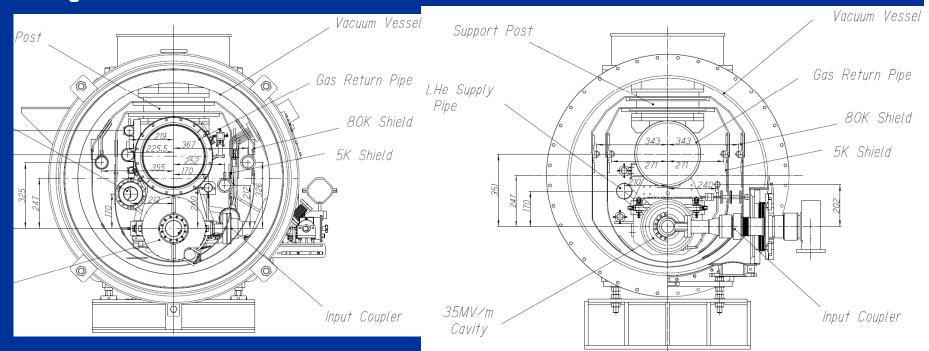
- 2 cavities from DESY and Fermilab
- 4 cavities from KEK
- Each half-cryomoducle from INFN and KEK

S1- Global : Cryomodule design


1. The cryomodule design has been started under the research collaboration between INFN and KEK.

• The general module design with 3D CAD (I-Deas) has been almost completed to confirm the interfaces

between Module-A, Module-C and the cryogenic system.


• KEK and DESY & FNAL input couplers locate in the opposite side with respect to the cavity packages,

however, LHe supply pipes are in the same side.

S1- Global : Cryomodule design

- **2.** The details of the cryostat components will be designed from October.
 - The Module-C design is basically same as the XFEL cryomodule.
 - The length of Module-C cryostat is designed to be 5800 mm.
 - The interface components between KEK and INFN components are manufactured and assembled by KEK.
- 3. The design of the KEK tuner and cavity-vessel will be improved from the present configuration.

Cross section of FNAL cavity and Module-C Cross section of KEK-BL cavity and Module

2008/9/30

2nd Asia ILC R&D Seminar

Summary

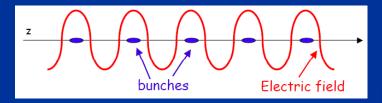
We need

- Flexibility in extended R&D for the cavity performance improvement.
- The plug-compatible conditions are inevitably required various efforts to be productive to be combined.

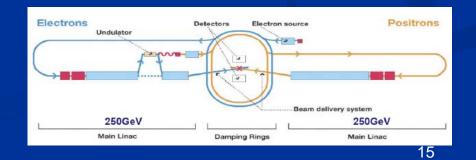
We aim for

Global cooperation for the ILC SCRF technology with having plug-compatibility, and with scoping smooth extension to the ILC construction/production phase.

Further discussions and Process


Date	Meetings	Notes
2008		
10/1	SCRF webex	Discussions within SCRF technical area
10/2	EC	Discussions with EC, and briefly AAP
10/5 or 12	PM-AAP	Discussions with AAP
10/19	PAC	Review by PAC
11/17-20	LCWS-08 in Chicago	Plug-compatibility consensus to be established
2009		
4/17-21	GDE meeting in Tsukuba	Review by AAP

Backup


Reference Design Report, published, 2007

- SC linacs: 2x11 km
 for 2x250 GeV
- Injector centralized
 - Circular damping rings
- IR with 14 mrad crossing angle

Parameter	Value			
C.M. Energy	500 GeV			
Peak luminosity	2x10 ³⁴ cm ⁻² s ⁻¹			
Beam Rep. rate	5 Hz			
Pulse time duration	1 ms			
Average beam current	9 mA (in pulse)			
Average field gradient	31.5 MV/m			
# 9-cell cavity	14,560			
# cryomodule	1,680			
# RF units	560			

Critical R&Ds in TDP

SCRF

High Gradient : 35 MV/m at the yield 90 % (S0) Plug-compatibility System Engineering (S1, S2) Conventional Facilities & Siting Tunnel: Deep/Shallow, Double/Single Tunnel Accelerator Systems Positron sources, Low emittance: ATF, CESR-TA

Main Linac Specific

Removal of support tunnel (single tunnel)

- klystron cluster
- XFEL-like
- Dubna option (surface klystron gallery)?

Klystron Cluster (HLRF)

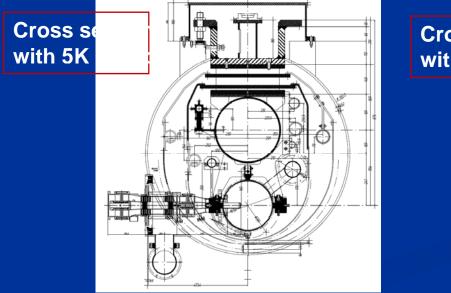
- 30 klystrons located in localised surface buildings
- ~300 MW RF power distributed in beam tunnel via over-moded waveguide
- effectively ~1km RF unit

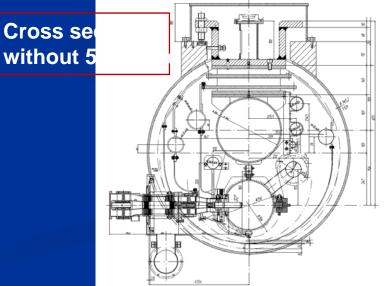
Marx modulator

- Reduced cost solution for process-water cooling
 - Higher △T specification

alternativ e options

STF1 : Thermal study by Module B


Measurement of heat loads with and without 5K shields by STF Module-B


(scheduled at 2009)

For the study of ILC-cryomodule design;

- The 5 K thermal shield is considered to be removed from the cost reduction of the cryomodule.
- The heat load at 2K will be measured with and without 5K shields.
 - ILC Cryomodule Thermal Model
 - 5K line : cooling the input couplers, support posts and current leads
 - 40K line : cooling the thermal radiation shield, support posts and current leads (44K)
 - cooling HOM couplers, HOM absorber and input couplers (66K)

Calculation: The difference between the required powers at 300K of two cases : 0.11 kW/Module

Cooperation with EuroXFEL and Other Projects

European X-ray Free Electron Laser

Facility

• EuroXFEL SRF design gradient : 25 MV/m

- ~ 100 SCRF cryomodule, based on the experience at TTF, DESY,
- Leading SCRF industrialization (scale: 1/20 of ILC, in coming 5 years)
- Keep close cooperation with XFEL, on-going project.

Further SCRF Accelerator Project Plans investigated:

Project X at Fermilab, SC Proton Linac at CERN, and ERL at KEK

Global Plan for SCRF R&D

Calender Year	2007	2008	2009	2010	2011	2012	
Technical Design Phase		TDP-1			TDP-2		
Cavity Gradient R&D to reach 35 MV/m		Process Yield > 50%			Production Yield >90%		
Cavity-string test: with 1 cryomodule		Global collab. For <31.5 MV/m>					
System Test with beam 1 RF-unit (3-modulce)	-	FLASH (DESY)		STF2 (KEK) NML (FNAL)			