

Ron Cassell

Differences from sid02Does it matter?

sid03: differences from sid02

Cylindrical approximation
 Hcal
 Ecal
 Muon system

Cylindrical approximation

> 12-gons are approximated by a cylinder with inner radius = 1.01162*(innermost R of 12-gon), with all material widths scaled by 1.01162. (meanR integrated over phi)
 > Octagons are scaled by 1.02674 (Muon

system)

Ecal

IR = 1265 mm
Sensor gap = 1.25 mm
30 layers W (2.5 mm) + 31 layers sensor + 5 mm space for support + 8 mm gap

Hcal

- ≻ IR = 1417 mm
- Layer = 18.9 mm steel + 8 mm sensor
- > 40 layers (1076 mm) + 2 mm outer steel
- > 8 mm gap to solenoid → IR(solenoid) = 2593 mm

Muon system

 > Octagon → cylinder approximation
 > 11 layers with 2 readouts/layer → 22 layers with 1 readout/layer to allow hitID → position. (NO change in material layout, only the hit tags)

Does it matter? Comparison with sid02

Sampling fractions
 Calorimeter only resolutions
 PPR reconstruction
 UI reconstruction

Sampling fractions

Calculate 6 simple sampling fractions from fixed E qq data (100, 200, 500)GeV cmE, using only Ecal and Hcal.

Sampling fractions

	Sid02	Sid03
EcalBarrInner	.017571	.017667
EcalBarrOuter	.0093678	.0094245
EcalEndcInn	.016495	.016515
EcalEndcOut	.0086669	.0089104
HcalBarr	8.6503	8.9956
HcalEndcap	7.5778	7.9274

Calorimeter only Energy resolution (with muon system)

11

12

PPR event E res: Forward

13

UI PFA event E res: Barrel

UI PFA event E res: Forward

Summary

- > sid03 is a better approximation to sid concept.
- For 250 GeV jets, ~ 5% difference between sid02-sid03.
- Many events already simulated using sid02: consequences of redoing with sid03?
- More detailed checks of both needed to assure no blatant errors.
- > We need a decision