# IP tuning scanning precomputed knobs 

## Philip Bambade Yves Renier

Laboratoire de l'Accérateur Linéaire (LAL) http://flc-mdi.Ial.in2p3.fr/

IP tuning task group meeting
24 October 2008

## Presentation of the method

## summary of the method

- Simulate ATF2 with $\frac{1}{10}$ of agreed static errors (e.g. list by G. White). Similar to situation after BBA ?
- Steering correction in EXT and FF with correctors and quad movers.
- compute orthogonal knobs for $\frac{\left\langle x x_{0}\right\rangle}{\sqrt{\left\langle x_{0}^{2}\right\rangle\left\langle x_{0}^{2}\right\rangle}}, \frac{\left\langle y y_{p}\right\rangle}{\sqrt{\left\langle y_{0}^{2}\right\rangle\left\langle y_{p}^{2}\right\rangle}}$, $\frac{\left\langle y x_{0}\right\rangle}{\sqrt{\left\langle y_{0}^{2}\right\rangle\left\langle x_{0}^{2}\right\rangle}}, \frac{\left\langle y \frac{\Delta E}{E}\right\rangle}{\sqrt{\left\langle y_{0}^{2}\right\rangle\left\langle\frac{\Delta E_{0}^{2}}{E}\right\rangle}}, \frac{\left\langle y x_{0} x_{\rho}\right\rangle}{\sqrt{\left\langle y_{0}^{2}\right\rangle\left\langle x_{0}^{2}\right\rangle_{0}}}, \frac{\left\langle y x_{0} \frac{\Delta E}{E}\right\rangle}{\sqrt{\left\langle\nu_{0}^{2}\right\rangle\left\langle x_{0}^{2}\right\rangle\left\langle\frac{\Delta E_{0}^{2}}{E}\right\rangle}}$.
- knobs using QD0 and QF1 strengths and SD0, SF1, SD4 and SF5 y positions only.
- Scan each knob and measure size.
- Fit a parabola to find minimum, set to this point.


## Presentation of the method

## Upgrades from previous presentation

- Knobs using normalized correlations
$\Rightarrow$ knobs more orthogonal.
- Knobs computed with similar effects on sizes
$\Rightarrow$ knobs more orthogonal.
- several iterations tried.
- pseudo-adaptative range of scans $\Rightarrow$ correction more precise.
- cancel bad correction if the size increases too much.
- came back to rms measurement.
- minor bug corrections.


## Results with $\frac{1}{10}$ of the nominal errors

## proportion of the seed bellow the indicated size



300 sizes mesurements $=7 \mathrm{H}$

## With nominal errors

## Results

- with $\frac{1}{10}$ of the nominal errors, dominant contributions from linear correlations.
- with the nominal errors, dominant contributions from non-linear correlations.
- 15\% (resp 5\%) of the seeds below 100nm (resp 44nm) after 300 size measurements.
- correlations scanned was mostly corrected.


## With nominal errors

## Prospects

- Identify other important correlations.
- Create new knobs to correct them with other variables: x displacements or roll of the sextupoles, quadrupoles strengths between sextupoles.
- As some corrections are quicker than others, try to correct the larger ones in priority to speed up.
- Try different correction gains for non-linear correlations.
- Would like to use Glen's post BBA seeds, but encounter technical problems.

