Status of ILD Detector MDI work

T. Tauchi, LCWS2008, UIC, Chicago, 17 November 2008

ILD00 - Mokka 3D model for simulation

Overall size : 8.88m in diameter, 8.09m in total length (Tentative, Nov.08)

MDI issues in ILD

- 1. platform in the push pull scheme : A.Herve, John
- 2. background : Adrian
 - minijets (T.Barklow, Jan. 04) for positive ion in TPC
 - anti-DID
- 3. beam pipe : Sugimoto, Suetsugu, M.Winter, FCAL-collab.
 - heating
 - vacuum pump system
 - passive anti-DID option
 - engineering design
- 4. self-shield for radiation in ILD : Sanami
- 5. iron structure : Uwe, Yamaoka
 - tail catcher M.Thompson's study
 - CMS style for surface assembly
 - gaps (assembly, cables, cooling pipes) and stray field

Push Pull

- Platform
 - Would make movement of detector easier
 - Need ~2m deeper hall (quite expensive)
 - So far no work on-going within ILD
 - Preliminary work at SLAC on stability and strength of platform on hold
 - Will assume platform for LOI
 - Check whether detector design is compatible with no platform
- Concern by F. Kircher
 - Vibrations may destroy coil titanium support structures. Need careful design

-> previous talk

Vertex Detector – Results

Hits on the vertex detector

- innermost layer has 400–800 hits / BX
- most hits direct, but also from backscatterers
- background levels drive the VTX design
- resulting backgrounds are still manageable

Neutron fluence in the vertex detector

- extrapolation from 100 BX to 500 fb⁻¹ total run time
- energy-dependent weighting of neutrons (NIEL model)
- fluence (10⁸ n / cm²) is uncritical for all layers

TPC – Occupancy

- highest occupancies at small radii
- overall value stays very well below 1 %
- outside-in tracking always possible
- n-p scattering gives negligible contribution
- backgrounds will be no problem for the TPC

ILC Beam Parameters – Backgrounds

- "Low Power" option:2.5 times more hits
- But: half the number of bunches per train
- Integrated backgrounds (over a fixed time) do not change much
- Upgrade to 1000 GeV:
 2 times more hits

TPC hit

Update on yy *hadrons* Calculation

Tim Barklow SLAC January 8, 2004

 $8600 e^+e^-$ pairs / train strike detector

1.8 hadronic events / train with pt>2.2GeV (TESLA TDR definition of hadronic bkgnd) 79 GeV / train detected energy 14.6 detected charged tracks / train

 $\begin{array}{l} 154 \ \mu^+\mu^- \ \ \text{pairs} \ \text{/} \ \text{train} \\ \\ 56 \ \text{GeV} \ \text{/} \ \text{train} \ \text{detected energy} \\ \\ 24 \ \text{detected charged tracks} \ \text{/} \ \text{train} \end{array}$

56 hadronic events / train no pt cut; Ecm down to $\pi^+\pi$ threshold 454 GeV / train detected energy 100 detected charged tracks / train

TILC08-Sendai

2008/03/3-6

15

Beampipe Engineering Design

Results

İİĻ

2008/03/3-6

TILC08-Sendai

Assumptions

İİĻ

 Distributed pumping to effectively evacuate these conductance-limited beam pipes

- Use NEG strip : ST707 (SAES Getters), for ex.

2008/03/3-6

TILC08-Sendai

Radiation Shield of Detector

(1) Self-shielded or additional local fixed/movable shielding wall

(2) Nominal operation : < 0.5 μ Sv(0.05 mrem)/hour near the offline detector

(3) Accident case :

< 250 mSv(25rem)/hour for maximum credible beam (simultaneous loss of both beams anywhere near IP) The integrated dose < 1mSv(100mrem) / accident</p>

(4) Remarks

gaps in CMS style assembly and PACMAN at beam line

Result of dose rate evaluation in IR hall

HCAL Depth Results

- Open circles = no use of muon chambers as a "tail-catcher"
- Solid circles = including "tail-catcher"

HCAL	$\lambda_{\mathbf{I}}$		
Layers	HCAL	+ECAL	
32	4.0	4.8	
38	4.7	5.5	
43	5.4	6.2	
48	6.0	6.8	
63	7.9	8.7	

ECAL : $\lambda_r = 0.8$ HCAL : λ_r includes scintillator

- **\star** Little motivation for going beyond a 48 layer (6 λ_{I}) HCAL
- **★** Depends on Hadron Shower simulation
- ★ "Tail-catcher": corrects ~50% effect of leakage, limited by thick solenoid

For 1 TeV machine "reasonable range" ~ 40 – 48 layers (5 λ_1 - 6 λ_1)

B Field Calculations

Added 60cm of iron to reduce stray field, bounding box 15m

Deformation due to Magnetic Forces

C.Martens

Deformation of inner thin endcap section with radial rips

- So far not connected to outer end-cap
- Plates connected at inner tube
- Very preliminary results max. deformation
 - 3mm at 3T
 - 4.5mm at 4T

Confident that a 'thin' plate inner end-cap can be built

U. Schneekloth

6. solenoid; 3.5T operation but design at 4T

: Francois Kircher, Yamaoka (cryostat, coil support)

- strong coil support for the push pull
- coil design for stability
- uniformity
- 7. anti-DID : B.Parker, Iwashita for passive anti-DID

8. support of final quadrupole magnets, forward calorimeters : Yamaoka, Matthieu

9. assembling/installation and maintenance method :

Sugimoto, Yamaoka, Uwe, Henri

- period - 5 years as in the RDR

10. option in machine parameters : Karsten, Henri, Tauchi

- new Low-P
- L*= 7 -8 m

→ As the CMS, Hybrid type is better, but B <5Tesla.

	NI (MA)	J (A/mm²)	N (turns/layer)	l per turn (kA)	I correction (kA)	Length (m)
C1	1.29	40.0	100	12.9	0	1.65
C2	0.65	40.0	50	12.9	0	1.65
C3	0.95	40.0	73	12.9	0	1.21
C4	2.35	93.0	73	32.1	19.2	1.21

ILD-V1 configuration

Forward region

Description QD0 (superconducting magnet) Support tube

Beam line components

- Requirements on support tube
 - Support all the forward components
 - Good vibration performance (QD0 stability)
 - Allowable amplitude
 - Few mm in static load
 - About 50nm for ground motion (IR interface document)
 - Alignment system is needed (in a mm range)

Forward Cals

2nd ILD Workshop

ilr iit

Model for calculations

For 50mm thick and Endcap closed

Alignment method Adjustable tie rods

DE L'ACCÉLÉRATEUR L I N É A I R E

Cylindrical Support Tube

Progree since Warsaw, even after Cambridge ?

Engineering model of ILD
 3D CAD
 Opening senario