Influence of Low-P Parametersets on ILD?

Karsten Buesser

international linear collider

ILD-MDI Phonemeeting 12.11.2008

Low-P Parameter Set:

- Half the number of bunches
- Less RF needed
- Luminosity recovered by squeezing bunches harder at the IP
- Beamstrahlung losses larger (factor 2)
- Pair backgrounds larger
- Potential large cost savings!
- E. Paterson:
- Low P looks interesting if one makes maximum use of lower power in beam in all systems from beginning to end.
 - This includes installed electrical distributions, cryosystems, RF power, Beam dumps etc etc

ILC GDE studies for the Minimal Machine will take Low-P parameters into account

Beam and IP Parameters for 500 GeV cms	i.					
Parameter	Symbol/Units	Nominal	Low N	Large Y	$\mathrm{Low}\; \mathrm{P}$	
Repetition rate	f_{rep} (Hz)	5	5	5	5	
Number of particles per bunch	$N (10^{10})$	2	1	2	2	
Number of bunches per pulse	n _b	2625	5120	2625	1320	
Bunch interval in the Main Linac	t_b (ns)	369.2	189.2	369.2	480.0	
in units of RF buckets		400	246	480	024	
Average beam current in pulse	I_{ave} (mA)	9.0	9.0	9.0	6.8	
Normalized emittance at IP	$\gamma \epsilon_x^* ~(\text{mm·mrad})$	10	10	10	10	
Normalized emittance at IP	$\gamma \epsilon_y^* \text{ (mm·mrad)}$	0.04	0.03	0.08	0.036	
Beta function at IP	$\beta_x^* (\mathrm{mm})$	20	11	11	11	
Beta function at IP	β_y^* (mm)	0.4	0.2	0.6	0.2	
R.m.s. beam size at IP	σ_x^* (nm)	639	474	474	474	
R.m.s. beam size at IP	σ_y^* (nm)	5.7	3.5	9.9	3.8	
R.m.s. bunch length	$\sigma_z \ (\mu m)$	300	200	500	200	
Disruption parameter	D_x	0.17	0.11	0.52	0.21	
Disruption parameter	D_y	19.4	14.6	24.9	26.1	
Beamstrahlung parameter	Υ_{ave}	0.048	0.050	0.038	0.097	
Energy loss by beamstrahlung	δ_{BS}	0.024	0.017	0.027	0.055	
Number of beamstrahlung photons	n_{γ}	1.32	0.91	1.77	1.72	
Luminosity enhancement factor	H_D	1.71	1.48	2.18	1.64	
Geometric luminosity	$\mathcal{L}_{geo}~10^{34}/\mathrm{cm}^2/\mathrm{s}$	1.20	1.35	0.94	1.21	
Luminosity	$\mathcal{L} \ 10^{34}/\mathrm{cm^2/s}$	2	2	2	2	

Low-P Background Numbers

 Number of produced pairs per BX is ~2 times larger than at nominal ILC parameters (here w/o travelling focus)

Impact on Subdetectors

- Total number of hits on vertex detector is 2.5 times larger than at nominal ILC parameters
- But the number of bunches per train is only half!
- Integrated backgrounds depend on integration times:
 - full bunch train: background numbers per readout are roughly the same
 - couple of bunches: integrated numbes scale with bunch distance times (370/480)
 - but backgrounds per luminosity will stay at 2.5!
 - What are the relevant numbers?

Impact on Subdetectors

Detectors which will be read out every BX will see more backgrounds. Example Beamcal:

2 Gamma Veto in Beamcal

Analysis by V. Drugakov, shown at LCWS2006:

```
After all cuts applied except veto (L=500fb<sup>-1</sup>):
    2-photon events ~ 2.7.10<sup>5</sup>
    SUSY events ~ 20
SUSY analysis is done by Z.Zang(LAL)
```

Number of unvetoed 2-photon events:

Veto Energy Cut, GeV	75	50
Nominal	45	5
Low Q	40	0.1
Large Y	50	9
Low P	364	321

Impact on Physics

Example Higgs Recoil Mass:

• Example top threshold scan:

- Idea:
 - Arrange for finite chromaticity at the IP
 - Create z-correlated energy spread along the bunch
- Beats the hourglass effect at the IP, increases luminosity!
- Could help to ease the effects of the Low-P parameters by allowing for larger bunch length
- Needs more studies

Travelling Focus Concept

K. Buesser

beam during travelling focus collision

11

Low-P and Travelling Focus

Preliminary study (A. Seryi):

				_
	Nom. RDR	Low P RDR	new Low P	
Case ID	1	2	3	
E CM (GeV)	500	500	500	
Ν	2.0E+10	2.0E+10	2.0E+10	
n _b	2625	1320	1320	
F (Hz)	5	5	5	
P _b (MW)	10.5	5.3	5.3	
γε _x (m)	1.0E-05	1.0E-05	1.0E-05	
γε _Υ (m)	4.0E-08	3.6E-08	3.6E-08	
βx (m)	2.0E-02	1.1E-02	1.1E-02	
βy (m)	4.0E-04	2.0E-04	2.0E-04	
Traveling focus	No	No	Yes	
Z-distribution *	Gauss	Gauss	Gauss	
σ _x (m)	6.39E-07	4.74E-07	4.74E-07	
σ _y (m)	5.7E-09	3.8E-09	3.8E-09	
σ _z (m)	3.0E-04	2.0E-04	3.0E-04	
Guinea-Pig δE/E	0.023	0.045	0.036	
Guinea-Pig Lumi (cm ⁻ ² s ⁻¹)	2.02E+34	1.86E+34	1.92E+34	
Guinea-Pig Lumi in 1%	1.50E+34	1.09E+34	1.18E+34	

- Low-P parameter set will give ~2 times more backgrounds per BX
 - Integrated number of backgrounds depends on integration times
 - Subdetectors read out per BX will not benefit from increased bunch spacing
 - Clear problem for the forward calorimeters
 - Anywhere else? Background tolerances are usually larger than factor of 2
- Diluted Luminosity Spectrum has impact on physics!
 - Could be recovered by longer running times
- Travelling focus concept might improve Low-P
 - But if this is true, then the travelling focus could be applied to the nominal ILC parameters and should give a luminosity increase by a factor of 2 without major drawbacks (background)
- GDE will study the Minimal Machine and Low-P seems to be attractive for cost saving reasons
- Big question: what is the gain in physics reach worth?