

Continuation of LCTPC "advancedendcap" planning for the ILD LOI

 "Advanced endplate" meetings now continuing to understand the electronic density that will allow building a coolable, stiff, thin endplate. There were three meetings in 2007.

--CERN 10 Nov, 14:00 (room to be announced):

-I will give an overview of the issues.

• The proposal for next steps (email 31.10.2008):

are cooled.

Reverse order today 🦨

DAQ issues added

10 Nov. 2008

-LCWS 15-20 Nov (day, room to be announced):
-Summary the CERN 10 Nov. meeting.
-Dan has been interested in the LCTPC endcap material/layout and will show some ideas.

-Alain Herve will review the cooling strategy for all subdetectors,

-Luciano will review the ideas he showed at Paris/2007 and maybe come up with first ones for the power pulsing.

boundary conditions for the gas and how some of the CMS subdetector

-Jan will tell us some pixel thoughts how an endcap for a large pixel TPC might look.

-AOB

-AOB

 Meeting somewhere in Europe in Jan.2009 (time, place to be announced) Organized by Takeshi and possibly involving experts from other technologies.

--ILD Korea Feb. 2009:

-Review the previous three meetings above.

-Depending who goes to Korea, iterate on respective issues.

-Come up with a "to-do" list of things to be covered at the final meeting before the LOI, namely at the

--TIPP meeting on 11 March 2009

-This agenda can be made up depending on the outcome of the above and should envisage an iteration on critical topics.

-Finally conclude what should go into the LOI about the lctpc (advanced) endcap.

- Endplate, electronics, power
- This is about "standard" electronics (CMOS pixel-electronics require a separate study).
- "Advanced endplate" meetings now continuing to understand the electronic density that will allow building a coolable, stiff, thin endplate.
- The (sometimes self-contradicting) requirements:
 - Number of pads: as many as possible
 - Power to cool: as small as possible
 - Endplate material: as stiff and as thin (X_0) as possible

- Endplate, electronics, power
- This is about "standard" electronics (CMOS pixel-electronics require a separate study).
- "Advanced endplate" meetings now continuing to understand the electronic density that will allow building a coolable, stiff, thin endplate.
- The (sometimes self-contradicting) requirements:
 - Number of pads: as many as possible (~10⁶ channels per endcap?)
 - Power to cool: as small as possible (0.5mW/channel with power pulsing?) (cooling medium liquid or gas?)
 - Endplate material: as stiff and as thin (X_0) as possible (purpose of the present exercise)

LCTPC performance: 3-slides-overview from Cambridge ILD-LOI meeting

 continuous 3-D tracking, easy pattern recognition throughout large volume

- ~98-99% tracking efficiency in presence of backgrounds
- time stamping to 2 ns together with inner silicon layer
- minimum of X_0 inside Ecal (~3% barrel, ~15% endcaps)
- $\sigma_{pt} \sim 50 \oplus diff \mu m (r \phi)$ and ~ $500 \mu m (rz) @ 4T$
- 2-track resolution <2mm ($r\phi$) and <5mm (rz)
- dE/dx resolution <5% -> e/pi separation, e.g.
- design for full precision/efficiency at 10 x estimated backgrounds

10 Nov. 2008

As a function of drift-distance L_{drift}, the expression for t hi point resolution is, as you know,

 $ma_(point)^2 = sigma_0^2 + Cd^2N_(eff) * L_(drift)$

roposal 1) on point resolution

-> sigma_0^2 = (50micron)^2 + (900micron*sin(phi))^2 (where phi is the local azimuthal angle of track wrt the padrow

°Cd*2/N_(#ff)=25*2/(22/sin(theta)*h/6mm)=(5.3micron/sqrt(cm))*2*(6mm/h)*sin(theta his is for B=4T which we favor, h is the pad height=pad-row pitch in mm, sets is the polar angle)

sigma_z(z)= sqrt(400micron**2 + z(cm) x (80micron/sgrt(cm))**2}

- Size, weight, support, dead areas
- Dead areas: 0
 - 10 cm in z at each endcap for "standard" electronics/cables (may be increased later)

10 Nov. 2008

Endplate thickness:

dz (mm)

0.003

0.03

0.003

1.964

0.003

0.003

1.964

0.003

0.003

3.964

0.05

662

80.45

0.03

0.03

Proposal 2) on Endplate thickness:

material

New Mokka list (** mark changes wrt old list):

96 X_0

0.02 gating

0.002

0.002

0.35 pads

0.02 mpgd

0.02 mpgd

0.01

0.01

0.01

1.03 silicon 2.33gccm 0.53 R.Oelectr

1.59 stiffness

14.77 %X 0

1 0 3 2

035 2.24 cooling 0.35

Air(0.85)+G10(0.15) 0.02 air+ +6.22 g10 space/ROboards

0.02 0.004

0.02

0.02

=>X_{tpcendplate}/X_0 = 0.15

copper

kapton

copper

copper

kapton

copper

copper

copper

copper z10

kapton

summa (new model) 100 mm

carbonfibre

TPC gas

kapton

TPC gas

TPC_gas

- Endplate, electronics, power
- Endplate material on preceding slide: GOAL ~ 15% X_0
- With 0.5mW/channel with power pulsing, estimated by a EUDET development of a generalize TPC RO chip based on a further development of the Alice Pasa/Altro => 0.5kW/endcap (Luciano report)
- Cooling (liquid or gas) under study (Alain report)
- DAQ issues (Xavier report)
- Mechanical structure (next meeting at LCW52008)

• Endplate: how was it done in Aleph?

Sandwich
 structure for
 stiffness

•22000 channels,
1.3kW per endcap
•Air/water cooling
•25% X_0 without cables

Ron Settles MPI-Munich LCTPC advanced-endcap studies for the LOI

- Endplate, electronics, power
- Endplate material: GOAL ~ 15% X_0
- Mechanical structure (next meeting at LCWS2008)
 - Aleph concept no longer possible for LCTPC
 - What can we do if electronic density too high?
 -- Reduce # of channels

Gluckstern: $\delta(1/p)$ indep. of pad height when σ_pt diffusion dominated

Price you pay is...

Ron Settles MPI-Munich LCTPC advanced-endcap studies for the LOI

- Endplate, electronics, power
- Endplate material: GOAL ~ 15% X_0
- Mechanical structure (next meeting at LCWS2008)

Continued next meeting...

Back-up slides

10 Nov. 2008

12

LCTPC performance goals

R&D plans/risks

...to be verified (or revised) after tests on the Large Prototype:

LCTPC MOA to R&D/design a TPC: Status August2008

Americas BNL 1/ Carleton1/ Montreal req Victoria 1/ Triumf1/ Cornell 1/ Indiana1/ LBNL prom Louisiana Tech req

Observer groups Iowa State MIT Purdue Yale TU Munich UMM Krakow Bucharest

10 Nov. 2008

Asia Tsinghua√ CDC: Hiroshima req KEK √ JAX Kanagawa req Kinki U√ Nagasaki InstAS req Saga √ Kogakuin √ Tokyo UA&Treq U Tokyo req Minadano SU-IITreq

Signatures 24

Promised 3

Requested 11

New groups welcome Ron Settles MPI-Munich LCTPC advanced-endcap studies for the LOI

Europe Brussels LAL Orsay req IPN Orsay req CEA Saclay V Aachen V Bonn DESY V **EUDET** U Hamburg 🗸 Freiburg req Karlsruhe req MPI-Munich Rostock Siegen prom NIKHEF Novosibirsky St. Petersburg Lund CERN

LCTPC engineering model for LOI and simulation Fieldcage, chamber gas

 Based on experience (Aleph, Star, Alice) and recent fieldcage for the LP:

we estimate ~ 3-4% X_0 total for the inner and outer fieldcages.

 Gas properties have been rather well understood by our many smallprototype R&D tests. The choice for the LCTPC will be a BIG issue which would require a long discussion for which there is no time here. This has no effect on the simualtion. For the engineering, the boundary condition is that we must use a non-flammable gas.

> Ron Settles MPI-Munich LCTPC advanced-endcap studies for the LOI

5. Push-pull ability

- At start, guess need 1/pb Z-peak calibration after each push-pull.
- This can probably be relaxed as experience is gained.
- Preliminary hardware discussion at IRENG07, SLAC Sept. 07:

Services Detector -> Trailer

<u>TPC :</u>

- 500 W per end plate
- HV/service/data cables: ~ 10^3 per side
- Gas/cooling supply
- Alignment laser
- 50-200kW racks in the counting house (trailer)

Considerations on readout plane Luciano's talk @ Paris Eudet mtg

IC Area (die size)

- 1-2 mm² /channel
 - Shaping amplifier 0.2 mm²
 - ADC 0.6 mm² (estimate)
 - Digital processor 0.6 mm² (estimate)
- in the following we consider the case of 1.5mm² / channel
- 64 ch / chip ⇒ ~ 100 mm²

Area of the chip on the PCB: $14 \times 14 \text{ mm}^2$ / chip $\Rightarrow \sim 3 \text{ mm}^2$ / pad

PCB dimensions < 40 x 40 cm² \Rightarrow ~53000 pads, ~800 FE chips / board

Considerations on readout plane

PCB topology and layer stack-up

Considerations on readout plane

Power consumption

- amplifier 8 mW / channel
- ADC 30 mW / channel
- Digital Proc 4 mW / channel
- Power regulation and links 10 mW / channel
- duty cycle: 1%
- average power / channel ~ 0.5 mW / channel
- average power / m² 167 W

