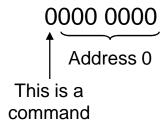

RS232 control of new FONT4 board

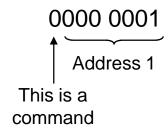
- New FONT4 firmware controlled by software over RS232 connection
- 'Proof-of-principle' signal generator designed and implemented
- Signal generator
 - Implemented on existing FONT4 board
 - Produces square wave output from DAC
 - Has variable period and amplitude
 - Variable parameters are stored in control registers
 - Control registers set over RS232
 - UART and control register architecture is modular, expandable and directly applicable to new FONT4 firmware

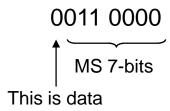
Control register architecture modules


- Control of signal generator utilises three modules:
 - UART
 - UART decoder
 - Control registers
- UART
 - Standard UART clocked at 40 MHz
 - Converts serial RS232 stream into 8-bit bytes
- UART decoder
 - Logic clocked at 40MHz
 - Interprets byte as either a command or 7 bits of data
 - A set MSB implies data
 - Contains a register which holds the address of the active control register
 - A 'command' simply changes the value of the address register

- Control registers module
 - Clocked at the system frequency of 100 MHz (357 MHz for FONT4 firmware)
 - Signals from decoder are synchronised via DFF metastability guard
 - Contains four 7-bit control registers
 - Received data are written to the register specified by current address
 - Control registers are concatenated in pairs to form two 14-bit outputs corresponding to period and amplitude
 - (Note 14-bit chosen as this is appropriate for FONT4 firmware)
 - Square wave generated by 100 MHz logic based on these outputs

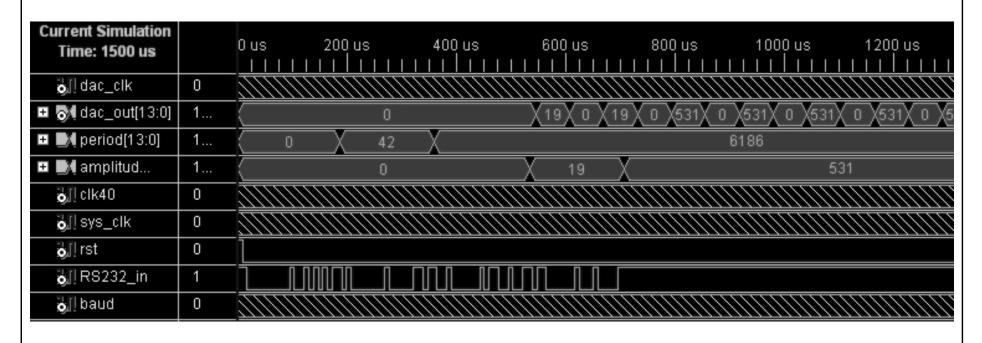
Example of setting signal period to 6,186 cycles


- In binary, 6,186 is 0110000 0101010
- Setting signal period requires transmission of 4 bytes over RS232
 - 1. Specify 0th control register (contains least significant 7 bits of period)


2. Send least significant 7-bits of period as data

Example of setting signal period to 6,186 cycles

3. Specify 1st control register (contains most significant 7 bits of period)



4. Send most significant 7-bits of period as data

Signal generator simulation

- Control registers module
 - First, period is set to 6186 cycles of 100 MHz (note it's actually ½ period)
 - Then amplitude is set to 531 DAC counts
 - DAC output is seen to alternate between 0 and 531 at correct frequency

Signal generator implementation

- Source of the 'teething problems' discovered
- FONT4 board 1 appears to have faulty RS232 chip (I really don't have a vendetta against this board!)
- Outgoing data is correctly converted to RS232 by chip
- Incoming RS232 data produces no TTL signal (confirmed by scoping chip)
- Signal generator was downloaded to board 2 and everything worked as in simulation
- C++ code used produce appropriate RS232 streams
- Tested for both positive and negative amplitudes (i.e 2's complement is handled correctly)

Current modification for use with FONT4 firmware

- Basic premise easily expanded for FONT by increasing number of control registers and size of address register
- Some technical details with input and output delay values (must increment to desired value)
- Possible source of undefined behaviour when used with FONT:
 - All control parameters must be correctly set during the ring clock cycle with bunches
 - Cannot have, for example, the MS 7 bits unmatched with the LS 7 bits
- Solution
 - Add another level of buffering for control registers
 - Require a special 'update' command to be sent over RS232 before buffers are copied
 - Allow FONT4 sampling logic to veto updates until after ring clock cycle
 - Ongoing work at present