Higgs hadronic branching ratios in the $\mathrm{ZH} \rightarrow$ llqq channel

Roberval Walsh
University of Edinburgh
[on behalf of J. Goldstein, M. Grimes and C. Lynch (U. Bristol);
V. Martin and H. Tabassam (U. Edinburgh)

Outline

- Introduction
- Samples
- Event reconstruction
- Event selection
- Branching ratios
- Summary

Introduction

- Determination of the Higgs branching ratios is very important as a test of the Higgs mechanism.
- We studied the performance of the ILD detector to measure
- $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{bb})$
- $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{cc})$
- $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{gg})$
- The process used in this study was $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZH} \rightarrow \mathrm{IIH}, \mathrm{I}=\mathrm{e}, \mu$
- Main backgrounds: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZZ}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$

Samples

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{IIH}, \mathrm{I}=\mathrm{e}, \mu$ (signal)
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ Ilqq, lvqq (background)
- Samples generated with Whizard at SLAC, and simulated with Mokka for the detector model ILD_00 and fully reconstructed with the ILCSOFT at DESY (Mass production samples):
- $\mathrm{M}_{\mathrm{H}}=120 \mathrm{GeV}$;
- Centre of mass energy $\sqrt{ } \mathrm{s}=250 \mathrm{GeV}$;
- Beam polarisation: $\mathrm{P}\left(\mathrm{e}^{-}\right)=-80 \%, \mathrm{P}\left(\mathrm{e}^{+}\right)=+30 \%$;
- Beamstrahlung effects included (but no hits added);
- Luminosity $\mathrm{L}=250 \mathrm{fb}^{-1}$.
- Standard reconstruction forced final states into fixed number of jets. Needed procedure to identify the final state leptons.

Event reconstruction - lepton identification

- Muon candidates

- Particle objects with a track and associated calorimeter cluster.
- Neural network in TMVA*:
- Etota/p, Eecal/ETotal, Еесац, Еhсal
- NN cut provided efficiency of 99.7% for μ ID, and 0.6% for e/r.
- Momentum p > 20 GeV ;
- No track within 5° of muon candidate direction.

[^0]
Event reconstruction - lepton identification

- Electron candidates
- Particle objects with a track and associated calorimeter cluster:
- Eecal/ETotal >0.9;
- $0.8<\mathrm{E}_{\text {Total }} / \mathrm{p}<1.2$;
- $\mathrm{p}>4 \mathrm{GeV}$.
- Bremstrahlung photons within 2° of the primary electron direction used to form the electron candidate.
- No isolation cut.

Event reconstruction - Z and Higgs

- \underline{Z} candidates
- Composed of pair of leptons with opposite charges;
- The candidate with mass closer to $\mathrm{Mz}_{\mathrm{z}}=91.2 \mathrm{GeV}$ was taken if more than one candidate found.

- Higgs candidates
- After Z (lepton pair) candidates are reconstructed, the remaining particles are forced into 2 jets;
- The di-jet system formed the Higgs candidate.

Event selection

- Pre-selection
- $N_{\text {particles }} \geq 25$ (removes 100\% $\mathrm{T}^{+} \mathrm{T}^{-}$, ~10\% W+W-)
- 1 Z candidate;
- 1 Higgs candidate.

Number of particles

Event selection

- Cut-based selection
- $70<\mathrm{Mz}_{2}<110 \mathrm{GeV}$
- $100<\mathrm{M}_{\mathrm{jj}}<140 \mathrm{GeV}$
- $117<M_{\text {recoil }}<150 \mathrm{GeV}$
- $\left|\cos \left(\theta_{z}\right)\right|<0.9$
- Likelihood ratio cut (electrons only):
- $\mathrm{M}_{\mathrm{j},}, \mathrm{M}_{5 \mathrm{C} _ \text {fit, }}$ Mrecoil, Thrust, $\cos \left(\theta_{\text {Thrust }}\right), \cos \left(\theta_{z}\right)$

Number of reconstructed events (250fb ${ }^{-1}$)

e channel	$e^{+} e^{-} \mathrm{H}$	$\mathrm{e}^{+} \mathrm{e}^{-} \mathrm{qq}$	evqq
initial	2493	87580	218378
cut selection	1445	2050	270
likelihood	1240	941	62

μ channel *	$\mu^{+} \mu^{-} H$	$\mu^{+} \mu^{-} q 9$
initial	2202	24003
cut selection	1371	1665

* In the muon channel no $\mu \mathrm{vqq}$ event survived after the cut selection. A likelihood ratio cut did not improve the results.

Event selection

Event selection

Flavour tagging

- Used the LCFIVertex package:
- Vertex reconstruction with ZVTOP;
- Flavour tagging based on neural networks:
b -tag and c -tag assigned to the jets.
- Defined an event-wise tag variable* based on b/c-tag of the two jets

$$
\mathrm{X} \text {-likeness }=\frac{X 1 \cdot X 2}{X 1 \cdot X 2+(1-X 1) \cdot(1-X 2)}
$$

where $\mathrm{X}=\mathrm{b}-\mathrm{tag}$ or c -tag of jets 1 and 2.

Branching ratios

- Template fitting method: Independent Monte Carlo samples with same reconstruction and selection as the 'data'.

background template

Flavour likeness distributions

Branching ratios

- The branching ratios were extracted minimising the x^{2} function:

$$
\begin{aligned}
\chi^{2}=\frac{\sum_{i, j}\left(N_{d a t a}^{i j}-f \sum_{s} r_{s} N_{s}^{i j}\right)^{2}}{\sigma_{i j}^{2}} \quad \text { where } \quad \sigma_{i j}^{2} & =N_{d a t a}^{i j}+f^{2} \sum_{s} N_{s}^{i j} \\
f & =L_{\text {data }} / L_{M C}
\end{aligned}
$$

- The fit parameters r_{s}, where $s=b b, c c, g g, b k g$, represent the ratio of $b b, c c$, gg and background events to the SM predicted number of events.
- N^{i} is the number of events in the bin (i,j) of the flavour likeness distributions.
- $\mathrm{Ni}_{\text {data }}>6$.
- Binning of the distributions: 10×10.
- Fixed $\mathrm{rbkg}=1$.

Branching ratios

- Results from the fit

	$r_{b b}$	$r_{c c}$	$r_{g g}$
electron channel	0.95 ± 0.06	1.3 ± 0.6	1.2 ± 0.5
muon channel	1.01 ± 0.04	0.87 ± 0.54	0.93 ± 0.51

- Branching ratios can be obtained from
$\sigma\left(e^{+} e^{-} \rightarrow Z h\right) \times B R(h \rightarrow s)=\mathrm{r}_{s} \times B R(h \rightarrow s)_{S M} \times \sigma\left(e^{+} e^{-} \rightarrow Z h\right)_{S M}$

Branching ratios

- Accuracy of the measurements
- Errors from the fit includes uncertainties from limited Monte Carlo samples.
- Used 'toy' Monte Carlo to test the stability of the fits and to extract the experimental statistical uncertainties of the branching ratios.

Branching ratios

- Accuracy in the Higgs hadronic branching ratios at ILD

Relative errors	$\mathrm{H} \rightarrow \mathrm{bb}$	$\mathrm{H} \rightarrow \mathrm{cc}$	$\mathrm{H} \rightarrow \mathrm{gg}$
electron channel	4%	36%	38%
muon channel	4%	46%	45%
combined	2.7%	28%	29%

- The estimated uncertainty in $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{IIH}\right)$ is 5% (ref. ILD Lol) and is not included.

Summary

- The statistical uncertainties of the Higgs hadronic branching ratios were estimated for the ILD detector using the process

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZH} \rightarrow \mathrm{IIH}, \mathrm{I}=\mathrm{e}, \mu
$$

at $\sqrt{ } \mathrm{s}=250 \mathrm{GeV}$ for an integrated luminosity of $250 \mathrm{fb}-1$ and beams with polarisation $\mathrm{P}\left(\mathrm{e}^{-}\right)=-80 \%, \mathrm{P}\left(\mathrm{e}^{+}\right)=+30 \%$.

- The relative errors, combining the electron and the muon channels and adding the estimated relative error of the Higgs cross section, are:

$$
\begin{aligned}
& \frac{\Delta B R}{B R}(H \rightarrow b \bar{b})=2.7 \% \oplus 5 \% \\
& \frac{\Delta B R}{B R}(H \rightarrow c \bar{c})=28 \% \oplus 5 \% \\
& \frac{\Delta B R}{B R}(H \rightarrow g \bar{g})=29 \% \oplus 5 \%
\end{aligned}
$$

[^0]: * http://tmva.sourceforge.net

