Higgs hadronic branching ratios in the ZH \rightarrow Ilqq channel

Roberval Walsh University of Edinburgh [on behalf of J. Goldstein, M. Grimes and C. Lynch (U. Bristol); V. Martin and H. Tabassam (U. Edinburgh)

Outline

- Introduction
- Samples
- Event reconstruction
- Event selection
- Branching ratios
- Summary

Introduction

- Determination of the Higgs branching ratios is very important as a test of the Higgs mechanism.
- We studied the performance of the ILD detector to measure
 - BR(H \rightarrow bb)
 - BR(H \rightarrow cc)
 - BR(H → gg)
- The process used in this study was $e^+e^- \rightarrow ZH \rightarrow IIH$, I=e,µ
 - Main backgrounds:
 e⁺e⁻ → ZZ, e⁺e⁻ → W⁺W⁻

Samples

- $e^+e^- \rightarrow IIH$, $I=e,\mu$ (signal)
- $e^+e^- \rightarrow IIqq$, Ivqq (background)
- Samples generated with Whizard at SLAC, and simulated with Mokka for the detector model ILD_00 and fully reconstructed with the ILCSOFT at DESY (Mass production samples):
 - M_H = 120 GeV;
 - Centre of mass energy $\sqrt{s} = 250 \text{ GeV}$;
 - Beam polarisation: P(e⁻) = -80%, P(e⁺) = +30%;
 - Beamstrahlung effects included (but no hits added);
 - Luminosity $L = 250 \text{ fb}^{-1}$.
- Standard reconstruction forced final states into fixed number of jets. Needed procedure to identify the final state leptons.

Event reconstruction - lepton identification

Muon candidates

- Particle objects with a track and associated calorimeter cluster.
 - Neural network in TMVA*:
 - E_{Total}/p, E_{ECAL}/E_{Total}, E_{ECAL}, E_{HCAL}
 - NN cut provided efficiency of 99.7% for μ ID, and 0.6% for e/ π .
 - Momentum p > 20 GeV;
 - No track within 5° of muon candidate direction.

Event reconstruction - lepton identification

Electron candidates

- Particle objects with a track and associated calorimeter cluster:
 - E_{ECAL}/E_{Total} > 0.9;
 - 0.8 < E_{Total}/p < 1.2;
 - p > 4 GeV.
- Bremstrahlung photons within 2° of the primary electron direction used to form the electron candidate.
- No isolation cut.

Event reconstruction - Z and Higgs

• <u>Z candidates</u>

- Composed of pair of leptons with opposite charges;
- The candidate with mass closer to M_Z=91.2 GeV was taken if more than one candidate found.

• <u>Higgs candidates</u>

- After Z (lepton pair) candidates are reconstructed, the remaining particles are forced into 2 jets;
- The di-jet system formed the Higgs candidate.

- Pre-selection
 - N_{particles} ≥ 25 (removes 100% τ⁺τ⁻, ~10% W⁺W⁻)
 - 1 Z candidate;
 - 1 Higgs candidate.

- Cut-based selection
 - $70 < M_Z < 110 \text{ GeV}$
 - $100 < M_{jj} < 140 \text{ GeV}$
 - 117 < M_{recoil} < 150 GeV
 - $|\cos(\theta_Z)| < 0.9$
- Likelihood ratio cut (electrons only):
 - M_{jj}, M_{5C_fit}, M_{recoil}, Thrust, cos(θ_{Thrust}), cos(θ_Z)

Number of reconstructed events (250fb⁻¹)

e channel	e+e-H	e+e-dd	evqq
initial	2493	87580	218378
cut selection	1445	2050	270
likelihood	1240	941	62

µ channel*	μ+μ-Η	µ+µ-qq
initial	2202	24003
cut selection	1371	1665

 * In the muon channel no $\mu\nu qq$ event survived after the cut selection. A likelihood ratio cut did not improve the results.

Flavour tagging

- Used the LCFIVertex package:
 - Vertex reconstruction with ZVTOP;
 - Flavour tagging based on neural networks: b-tag and c-tag assigned to the jets.
- Defined an event-wise tag variable* based on b/c-tag of the two jets

X-likeness =
$$\frac{X1 \cdot X2}{X1 \cdot X2 + (1 - X1) \cdot (1 - X2)}$$

where X=b-tag or c-tag of jets 1 and 2.

* Kuhl & Desch, LC-PHSM-2007-001

• Template fitting method: Independent Monte Carlo samples with same reconstruction and selection as the 'data'.

• The branching ratios were extracted minimising the χ^2 function:

$$\chi^2 = \frac{\sum_{i,j} (N_{data}^{ij} - f \sum_s r_s N_s^{ij})^2}{\sigma_{ij}^2} \qquad \text{where} \quad \sigma_{ij}^2 = N_{data}^{ij} + f^2 \sum_s N_s^{ij} \\ f = L_{data}/L_{MC}$$

- The fit parameters r_s, where s = bb, cc, gg, bkg, represent the ratio of bb, cc, gg and background events to the SM predicted number of events.
- N^{ij} is the number of events in the bin (i,j) of the flavour likeness distributions.
- $N^{ij}_{data} > 6$.
- Binning of the distributions: 10 x 10.
- Fixed $r_{bkg} = 1$.

• Results from the fit

	r _{bb}	r _{cc}	r _{gg}
electron channel	0.95 ± 0.06	1.3 ± 0.6	1.2 ± 0.5
muon channel	1.01 ± 0.04	0.87 ± 0.54	0.93 ± 0.51

• Branching ratios can be obtained from

$$\sigma(e^+e^- \to Zh) \times BR(h \to s) = \mathbf{r}_s \times BR(h \to s)_{SM} \times \sigma(e^+e^- \to Zh)_{SM}$$

- Accuracy of the measurements
 - Errors from the fit includes uncertainties from limited Monte Carlo samples.
 - Used 'toy' Monte Carlo to test the stability of the fits and to extract the experimental statistical uncertainties of the branching ratios.

• Accuracy in the Higgs hadronic branching ratios at ILD

Relative errors	H→bb	Н→сс	H→gg
electron channel	4%	36%	38%
muon channel	4%	46%	45%
combined	2.7%	28%	29%

 The estimated uncertainty in σ(e⁺e⁻ → IIH) is 5% (ref. ILD LoI) and is not included.

Summary

• The statistical uncertainties of the Higgs hadronic branching ratios were estimated for the ILD detector using the process

```
e^+e^- \rightarrow ZH \rightarrow IIH, I=e,\mu
```

at $\sqrt{s} = 250$ GeV for an integrated luminosity of 250 fb-1 and beams with polarisation P(e⁻) = -80%, P(e⁺) = +30%.

• The relative errors, combining the electron and the muon channels and adding the estimated relative error of the Higgs cross section, are:

$$\frac{\Delta BR}{BR}(H \to b\bar{b}) = 2.7\% \oplus 5\%$$

$$\frac{\Delta BR}{BR}(H \to c\bar{c}) = 28\% \oplus 5\%$$

$$\frac{\Delta BR}{BR}(H \to g\bar{g}) = 29\% \oplus 5\%$$